ارائه چهارچوب عملی برای تعیین پتانسیل فرونشست زمین (مطالعه موردی: دشت اردبیل)

نویسندگان

1 دانشکده علوم زمین، دانشگاه ارومیه، ارومیه، ایران

2 استادیار گروه زمین شناسی دانشگاه تبریز

3 گروه علوم زمین، دانشگاه ارومیه، ارومیه، ایران

4 گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

چکیده

در طی سالهای اخیر، فرونشست زمین در آبخوانها به یکی از مشکلات جدی زیست‌محیطی در اثر افزایش فعالیت‌های کشاورزی و صنعتی تبدیل شده است. رشد جمعیت باعث استفاده بیش از حد منابع آب زیرزمینی در برخی مناطق ایران شده و نتیجه آن ظهور پدیده فرونشست در این نقاط از جمله دشت اردبیل می‌باشد. بنابراین شناسایی مناطق محتمل فرونشست و کنترل و مدیریت این مناطق می‌تواند به درک بهتر این پدیده پیچیده و جلوگیری احتمالی از خسارات ناشی از آن بیانجامد. دراین پژوهش رهیافت جدیدی با استفاده از هفت پارامتر موثر بر فرونشست برای تعیین محدوده‌های مستعد فرونشست زمین پیشنهاد شده و کارایی چهارچوب پیشنهادی در آبخوان دشت اردبیل، مورد بررسی قرار گرفته است. در این چهارچوب هفت پارامتر مؤثر در فرونشست شامل افت سطح آب زیرزمینی، محیط آبخوان، تغذیه، پمپاژ، کاربری اراضی، ضخامت آبرفت و گسل به صورت لایه رستری تهیه شده و بعد از رتبهدهی و وزندهی شاخص پتانسیل فرونشت محاسبه شد که مقدار آن برای دشت اردبیل بین 80 تا 154 به دست آمد. با توجه به عدم قطعیت موجود در وزنهای کارشناسی، از الگوریتم ژنتیک برای بهینه‌سازی وزن‌های داده شده استفاده شد. نتایج حاصل از آن با فرونشست بدست آمده از تصاویر راداری ارزیابی شده با شواهد صحرایی مقایسه شد و مشخص گردید چهارچوب بهینه شده، نتایج نسبی بهتری ارائه می‌دهند و قسمت‌های جنوب و جنوب‌شرقی دشت پتانسیل آسیب‌پذیری بالایی را نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

A Framework to Determine the Land Subsidence Potential (Case Study: Ardebil Plain)

نویسندگان [English]

  • Pari Khalifi 1
  • Esfandiar Abbas Novinpour 3
  • Maryam Gharakhani 4
1 Faculty of Earth Sciences, Urmia University, Urmia, Iran
3 Department of Earth Sciences, Urmia University,Urmia, Iran
4 Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz ,
چکیده [English]

Recently, land subsidence has become one of the serious environmental problems due to increased agricultural and industrial activities. Population growth have caused to groundwater over abstraction and land subsidence in some parts of country such as Ardabil plain. Therefore, identifying, control and management of high potential subsidence areas may help to better understand this complex phenomenon and avoiding the possible damages. In this research, a new framework suggested using seven effective parameters on subsidence to determine areas that are vulnerable to land subsidence and its capability is evaluated in Ardabil plain aquifer. In this framework seven effective parameters on land subsidence including groundwater level decline, aquifer media, recharge, pumping, land use, alluvium thickness and fault are prepared in raster layer format and weights and rates assigned for layers to calculate Subsidence Potential Index (SPI). The SPI for Ardabil plain aquifer was obtained from 80 to 154. According to inherently uncertainty of the assigned weights by expert, genetic algorithm adopted to optimize given weights. The results were compared with subsidence value obtained from radar images and it indicated that optimized framework have relatively better results. The southern and southeastern parts of the Plain shows higher SPI.

کلیدواژه‌ها [English]

  • Framework
  • Subsidence potential
  • Ardabil plain aquifer
  • Groundwater
  • Radar image
Bates RL and Jackson JA, 1980. Glossary of Geology (second edition). Publish by American Geological Institute Alexandria, Virginia.
Bouwer H, 1978. Groundwater Hydrology. McGraw-Hill Book, New York, 480p
Brookes CJ, 2001. A genetic algorithm for designing optimal patch configurations in GIS. International Journal of Geographical Information Science 15(6):539-559.
Farboudfam N, Ghorbani MA and Alami MT, 2009. River flow prediction using genetic programming (case study: Lighvan river watershed). Water and Soil Science- University of Tabriz 19:107-123.
Galloway D, Jones DR and Ingebritsen SE, 1999. Land Subsidence in the United States, U.S. Geological Survey, Virginia USA.
Gambolati G, Gatto P and Freeze RA, 1974. Mathematical simulation of the subsidence of Venice: 2. Results, Water Resource Research 10:563-577.
Gharekhani M, Nadiri A, Asghari Moghadam A and Sadeghi Aghdam F, 2015. Optimization of DRASTIC model by support vector machine and artificial neural network for evaluating of intrinsic vulnerability of Ardabil plain aquifer. Journal of Eco Hydrology 3:311-324. (In Persian with English abstract)
Holland JH, 1975. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor, USA.
Hu RL, Yue ZQ, Wang LC and Wang SJ, 2004. Review on current status and challenging issues of and subsidence in China. Engineering Geology 76:65-77.
Komak Panah A, 2007. Geotechnical investigation on the land failure of Yazd-Ardakan road network. Journal of Transportation 2:181-194. (In Persian with English abstract)
Kord M, 2014. Numerical modeling of the Ardabil plain aquifer and its management using optimization of Groundwater extraction. Ph.D thesis of Hydrogeology. Department of Geology, Faculty of Natural Science, University of Tabriz. (In Persian with English abstract)
Kord M, Asghari Moghaddam A and Nakhaeei M, 2013. Assessment of ground water quality for irrigation in Ardabil Plain. International Journal of Agriculture and Crop Sciences 5(18): 2135-2140.
Kord M, Asghari Moghaddam A and Nakhaeei M, 2013. Investigation of hydrogeological characteristics of Ardabil Plain aquifer, Northwest of Iran. ISESCO Journal of Science and Technology 9(15): 63-69.
Larson KJ, Barasaoslu H and Marino MA, 2001. Prediction of optimal safe ground water yield and land subsidence in the Loss Banos-Kettlman city area, California, using a calibrated numerical simulation model. Journal of Hydrology 242:79-102.
Maghsoudi Y and Mahdavi S, 2015. The Basics of Remote Sensing Radar. Publications of Khaje Nasir al-Din Tusi University. (In Persian)
Mahdi Pour F, 2006. Locating recreational services complexes using a spatial information system with an emphasis on genetic algorithm. Master thesis, Khajeh Nasir Tusi University. (In Persian)
Nadiri AA, Fijani E, Tsai FTC and Asghari Moghaddam A, 2013. Supervised committee machine with artificial intelligence for prediction of fluoride concentration. Journal of Hydrology Information 15(4):1474-1490.
Nadiri A, Hassan M and Asadi S, 2015. Supervised intelligence committee machine to evaluate field performance of photocatalytic asphalt pavement for ambient Air purification. Transportation Research Record: Transaction Research (2528): 96-105.
Nadiri AA, Gharekhani M, Khatibi R, Sadeghfam S and Asghari Moghaddam A, 2017a. Groundwater vulnerability indices conditioned by supervised intelligence committee machine (SICM). Science of the Total Environment 574:691-706.
Nadiri AA, Sedghi Z, Khatibi R and Gharekhani M, 2017b. Mapping vulnerability of multiple aquifers using multiple models and fuzzy logic to objectively derive model structures. Science of the Total Environment 593-594:75-90.
Nadiri AA, Gharekhani M, Khatibi R and Moghaddam AA, 2017c. Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models. Environmental Science and Pollution Research 24(9):8562-8577.
Pacheco J, Arzate J, Rojas E, Arroyo M, Yutsis V and Ochoa G, 2006. Delimitation of ground failure zones due to land subsidence using gravity data and finite element modeling in the Queretaro valley. Mexico. Engineering Geology 84:143-160.
Phien-wej N, Giao P and Nutalaya P, 2006. Land subsidence in Bangkok, Thailand. Engineering Geology 82:187-201.
Rahnema H and Mirasi S, 2012. Seismic and geotechnical study of land subsidence and vulnerability of rural buildings. International Journal of Geosciences 3: 878-884.
Rahnema H and Mirassi S, 2014. Crisis management concerning underground water falling and land subsidence occurrence in the Plains of Iran. Advances in Environmental Biology 8(5):1453-1465.
Rahnema H and Mirassi S, 2016. Analysis and evaluate the effective parameters on land subsidence. Modares Civil Engineering Journal 1:45-54. (In Persian with English abstract)
Wang GY, You G, Shi B, Yu J and Tuck M, 2009. Long-term land subsidence and strata compression in changzhou, China. Engineering Geology 104:109-118.
Zare Mehrjerdi AA, 2011. Investigation of ground subsidence reasons and fractures in Rostagh area, south of Meybod. Journal of Geography and Environmental Planning 3:166-155. (In Persian with English abstract)