پیش‌بینی عمق آب زیرزمینی با استفاده از مدل طیفسنجی سری‌های زمانی

نویسندگان

1 استادیار گروه مهندسی آب پردیس کشاورزی و منابع طبیعی، دانشگاه رازی

2 دانشیار گروه مهندسی آب پردیس کشاورزی و منابع طبیعی، دانشگاه رازی

3 کارشناس ارشد مهندسی منابع آب پردیس کشاورزی و منابع طبیعی، دانشگاه رازی

چکیده

امروزه بیشینه بهره‌برداری از منابع آب‌زیرزمینی در کشور به‌عمل می‌آید. همچنین عمده منابع آب قابل استحصال، مورد بهره‌برداری قرار گرفته‌اند و مدیریت منابع آب در آینده به استحصال بیشتر از منابع آب زیرزمینی موجود وابسته است. پیش‌بینی نوسانات عمق آب ‌زیرزمینی جهت برنامه‌ریزی مناسب‌ به‌ویژه در مناطق خشک ضروری است. در این پژوهش جهت پیش‌بینی عمق آب زیرزمینی دشت چمچمال از تحلیل طیفی سری‌های زمانی استفاده شده است. برای این منظور از سری‌های ماهانه عمق آب‌زیرزمینی طی سال‌های 88- 1374 برای دوره واسنجی استفاده گردید و منحنی تناوب‌نگار داده‌ها ترسیم گردید. با استفاده از روش تحلیل طیفی بسط فوریه، دوره تناوب‌ داده‌ها مورد بررسی قرار گرفت و جزء قطعی تناوب داده‌ها حذف گردید. در گام بعد نرمال بودن و ایستایی داده­ها مورد بررسی قرار گرفت. در ادامه مدل‌های مختلف سری ‌زمانی بر داده‌ها برازش داده شد و کارائی و دقت مدل‌های برازش داده شده با معیار آکائیک مورد ‌ارزیابی قرار گرفت. نتایج نشان داد که از بین مدل‌های کلاسیک سری ‌زمانی، در پیزومترهای قشلاق‌آباد، بزن‌آباد و گاوکل به‌ترتیب مدل‌هایARMA(1,1)، ARMA(2,1)  و ARMA(1,1) بهترین برازش را بر داده‌ها دارند. نهایتاً برای تشخیص درستی الگوی برازش داده‌شده از آزمون فرض ایستایی باقیمانده‌ها استفاده گردید. نتایج این پژوهش با به ‌کارگیری ضریب همبستگی 78/0و شاخص پراکندگی 4 تا 14 درصدی پیزومترها، کارآیی و دقت بالای تکنیک سری‌ زمانی را در پیش‌بینی عمق آب‌زیرزمینی پیزومترهای منطقه نشان داد. نحوه به‌کارگیری تحلیل طیفی به فرم مطرح‌شده در این تحقیق در پیش‌بینی عمق آب زیرزمینی بسیار سودمند می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Forecasting Groundwater Depth Using Time series Spectral Analysis

نویسندگان [English]

  • SE fatemi 1
  • R Ghobadian 2
  • M Pakbin 3
1 Asist.Prof. of Water Engineering, Campus of Agriculture and Natural Resources, Razi University, Iran
2 Assoc. Prof. of Water Engineering, Campus of Agriculture and Natural Resources, Razi University, Iran
3 M.Sc. of Water Engineering, Campus of Agriculture and Natural Resources, Razi University, Iran
چکیده [English]

Abstract
     Nowadays, the maximum operation of groundwater resources has been achieved in Iran. Also, the majority of extractable water resources are utilized and the managing of water resources in the future is depended on more extracting of water resources. For better basin management, forecasting the groundwater depth fluctuations in particular in arid areas is more necessary. In this study, time series spectral analysis is used to forecast the groundwater depth fluctuations of Chamchamal plain. In this regard, the monthly groundwater depth time series during 1995 to 2009 years are used for calibration periods and the periodogram diagrams are depicted. Data periodicity is analyzed by using Fourier spectral analysis and the deterministic term of data periodicity is eliminated. In the next step, stationary and normality in the data are considered. After that, the different time series models are fitted for the prepared data and accuracy of them were assessed by Akaike (AIC) criterion. The results show that ARMA (2, 1), ARMA (1, 1), ARMA (1, 1) models are the best fitted models for the measured data in Bazanabad, Gheshlaghabad and Gavkol piezometers, respectively. Finally, the residuals stationarity assumption test is used to check for the correct diagnosis of the fitted pattern. In this study, the results represent the high performance and accuracy of the applied new approach to the time series spectral analysis for forecasting groundwater depth by application of the regression coefficient amount of 0.78 and SI- Index of 4% to 14% of piezometers' data. Using spectral analysis, as has been provided in this study, is very useful for forecasting groundwater depth.

کلیدواژه‌ها [English]

  • Chamchamal Plain
  • Forecasting
  • Groundwater depth
  • Spectral analysis
  • Time Series
Bierkens MFP, Knotters M and van Geer FC, 1999. Calibration of transfer function-noise models to sparsely or irregularly observed time series. Water Resources Research 35(6): 1741–1750.
Box GEP and Cox DR, 1964. An analysis of transformations. Journal of the Royal Statistical Society, Series‌ B (Methodological) 26(2): 211-252.
Box GEP and Jenkins GW, 1976. Time Series Analysis: Forecasting and Control. Wiley, Holden-Day, San Francisco, 575 p.
Haltiner JP and Salas JD, 1988. Development and testing of a multivariate, seasonal ARIMA (1,1) model. Journal of Hydrology 104: 247-272.
Hurvich CM and Tsai CL, 1989. Regression and Time series Model selection in small sample. Biometrika 76: 297-307.
Kashyap RL and Ramachandra RA, 1976. Dynamic Stochastic Models from Empirical Data. Academic Press, New York.
Khalili K, Fakheri Fard A, Dinpajooh Y and Ghorbani MA, 2011. Nonlinearity testing of stream flow processes by BDS test (Case study: Shaharchi River in Urmia). Water and soil science 21(2): 25–37.
Knotters M and Van Walsum PEV, 1997. Estimating fluctuation quantities from the time series of water table depths using models with a stochastic component. Journal of Hydrology 197: 25–46.
Malekinezhad H and Porshaiani R, 2013. Application and comparison of integrated time series and Artificial Neural Network Model for prediction of the variations of groundwater level (Case study: Plain Marvast). Journal of Irrigation Science and Engineering 36(3): 81–92.
Moeeni H, Bonakdari H, Fatemi SE and Ebtehaj I, 2016. Modeling the Monthly Inflow to Jamishan Dam Reservoir Using Autoregressive Integrated Moving Average and Adaptive Neuro- Fuzzy Inference System Models. Water and soil science 26(1-2): 273–285.
Niromand H and Bozorgnia A, 1993. Introduction to Time Series Analysis. Ferdowsi University of Mashhad Press, Mashhad, Iran.
Omidi R, Radmanesh F and Zareie H, 2013. River discharge forecasting using by stochastic models. Pp. 513-521. The first National Conference on Water and Agriculture Water Challenges, Iran Irrigation and Drainage Association. 13 February, Isfahan, Iran.
Pourmohamadi S, Malekinejad H and Pourshariati R, 2013. Comparison of ANN and time series appropriately in prediction of ground water table (Case Study: Bakhtegan basin). Journal of water and soil conservation 20(4): 251–262.
Rahmani AR and Sedehi M, 2004. Predication of groundwater level changes in the plain of Hamedan-Bahar using time series model. Journal of water and wastewater 15(3): 42–49.
Rezaie A and Mosavi SN, 2009. Groundwater level fluctuations forecasting of Farough plain- Marvdasht city using by time series model. Pp. 1-8. Sixth Iranian Agriculture Economics Conference. October, Karaj, Iran.
Salas JD, Delleur JW, Yevjevich V and Lane WL, 1980. Applied Modeling of Hydrologic Time Series. Water Resources Publication, Colorado.
Shaghaghian MR, 2006. Prediction of dissolved oxygen in rivers using a Wang-Mendel method–Case study of Au-Sable River. World Academy of Science, Engineering and Technology 62: 795-802.
Shaghaghian MR and Shaghaghian M, 2011. Comparison of groundwater levels time modeling between using fuzzy logic and based time series analysis methods (Case study: Shiraz plain). Sixth National Civil Engineering Congress. 26-27 April, Semnan, Iran.
Van Geer FC and Zuur AF, 1997. An extension of Box-Jenkins transfer noise models for spatial interpolation of groundwater head series. Journal of Hydrology 192: 65–80.