مقایسه فیلترینگ امواج تجزیه موجکی و میانگین‌های متحرک (مطالعه موردی: ایستگاه ونیار در حوضه آجی چای)

نوع مقاله: مقاله پژوهشی

چکیده

دراین مطالعه رابطه بین امواج تجزیه شده جریان روزانه رودخانه آجی چای درایستگاه ونیار از طریق موجک و فیلتر میانگین متحرک مورد بررسی قرار گرفته است .ابتدا با استفاده از تجزیه موجک، توزیع فرکانس­های سری زمانی جریان روزانه براساس مقیاس به فرکانس­های بالا و پایین تجزیه و زیر سری­های تقریبی برای مقیاس­های بالاتر برآورد گردیده است. درمرحله بعد فیلتر میانگین متحرک برای کاهش و حذف نویزهای تصادفی در سری داده­های جریان روزانه مورد استفاده قرار گرفت. نتایج حاصل بیانگر عملکرد مشابه دو روش تجزیه موجک و میانگین متحرک برای صاف یا هموار نمودن سیگنال و کاهش نویزهای سری جریان روزانه رودخانه آجی چای برای سطح های تجزیه 1 الی 10 است. ضمناْ از معیار کمی ضریب همبستگی نیز برای بررسی تشابه عملکرد دو روش مذکور استفاده و نتایج نشان از همبستگی بالای مقادیر حاصل از دو روش بکار رفته در مطالعه دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparing Filtering of Wavelet Decomposed Waves with Moving Averages (Case Study: Vanyar Station in Ajichay Basin)

چکیده [English]

In this study the relationship between daily flow decomposed waves of Ajichay river in Vanyar station is investigated using the wavelet and moving average filter. Initially, using wavelet analysis the frequencies distribution of daily flow time series based on scale is decomposed to high and low frequencies and approximate subseries for higher scale are estimated. In the next step moving average filter for decreasing and removing of random noises in daily flow data time series is used. Obtained results represent similar performance of the wavelet analysis and moving average methods in signal smoothing and noise decreasing of Ajichay river daily flow time series for decomposition levels 1 to 10 in wavelet method.Also the quantitative criterion of the correlation coefficient for investigation of the performance similarity of the both methods is used. Results show high correlation between obtained values from the methods used in the study.

کلیدواژه‌ها [English]

  • Approximate sub-signal
  • Filtering
  • Frequency
  • Moving average
  • Wavelet
ابراهیمی ل و بارانی غ، 1384. آنالیز موجکی دبی های ورودی به مخزن سد ونیار تبریز. صفحه­های 2335 تا 2342  مجموعه مقالات دومین کنفرانس سراسری آبخیزداری و مدیریت منابع آب و خاک،3-4 اسفندماه، دانشگاه کرمان، کرمان.
رستمی م، فاخری فرد ا، قربانی م، دربندی ص و دین پژوه ی، 1391. بررسی کاربرد آنالیز موجک در پیش­بینی دبی رودخانه علوم و مهندسی آبیاری (مجله ی علمی کشاورزی)، جلد ۳۵، شماره 2. صفحه­های 73-81.
 طوفانی پ، مساعدی ا و فاخری فرد ا، 1390. پیش بینیبارندگیبا استفاده مستقیم از نظریه موجک (مطالعه موردی: ایستگاه بارانسنجی زرینگل استان گلستان)، نشریه آب و خاک (علوم و صنایع کشاورزی) ، جلد ۲۵ ، شماره ۵، آذر - دی، صفحه­های 1217- ۱۲۲۶.
 مهدیخانی ح و ابریشم چی ا، 1385. تخمین هوشمند دبی جریان ورودی به مخزن با استفاده از مدل تلفیقی شبکه عصبی و تبدیلات موجک. (مطالعه موردی: سد مخزنی دز)، دومین کنفرانس مدیریت منابع آب ایران،3-4 بهمن، دانشگاه صنعتی اصفهان، اصفهان.
Daubechies I, 1990. The wavelet transform time-frequency localization and signal analysis. IEEE Trans Inform Theory 36: 961–1004.
Donho LD and Johnstone IM,1995. Adapting to unknown smoothness via wavelet shrinking, Journal of American State Assoc 90: 1200-1224.
 Farahani SD and Kowsary F,2010. Comparison of the mollification method, wavelet transform and moving average filter for reduction of measurement noise effects in inverse heat conduction problems transaction B: Mechanical Engineering. Sharif University of Technology 17(4): 301-314.
Grossman A and Morlet J,1984. Decomposition of hardy function into square integrable wavelets of constant shape. SIAM Journal of Mathematical Analysis 15: 732-736.
Lucero OA and Rodriguez NC, 2000. Statistical characteristics of inter decadal fluctuations in the Southern Oscillation and the surface temperature of the equatorial Pacific. Atmospheric Research 54: 87–104.
Mallat S,1989.Throries for multi resolution signal decomposition: the wavelet representation, IEEE Pattern Anal and Machine Intell 11(7): 93-674.
Morlet J, Arehs G, Fourgeao I and Giard D, 1982. Wave propagation andsampling theory. Geophysics 47(2): 203- 221.
Nakken M,1999. Wavelet analysis of rainfall-runoff variability isolating climatic from anthropogenic patterns. EnvironModelling Software 14: 283–295.
 Partal T and Kisi O, 2007. Wavelet and neruro- fuzzy conjunction model for precipitation forecasting. Journal of Hydrology 342: 199- 212.
Rioul O and Vetterli M,1991. Wavelet and signal processing. IEEE Signal Processing Magazine 8:14-38.
Satyaji R and Krishna B, 2009. Modeling hydrological time series data using wavelet neural network analysis. Joint International Convention of Assembly and 37th IAH Congress Water: A Vital Resource under Stress. 6-12 September, Delhi. India.
 Sifuzzaman M, Islam MR and Ali MZ, 2009. Application of wavelet transform and its advantages compared to fourier transform. Journal of Physical Sciences 13:121-134.
Wornell G.W,1996. Signal Processing with Fractals: A Wavelet- Based Approach. Prentice- Hall, Englewood Cliffs, NJ.
  Zhang P, Geng R and Shen G,2002. Application ofwavelet Transformof acoustic emission testing. .Journal of non-destructive testing 24(10):436-442.