بررسی پارامتریک توابع نگهداشت خاک در سیستم دو فازی LNAPL- هوا

نوع مقاله : مقاله پژوهشی

چکیده

به منظور بررسی رفتار هیدرولیکی LNAPL  ها در خاک، منحنی­های نگهداشت خاک برای بنزین و آب به­وسیله­ی دستگاه ستون آویزان بدست آمد. سپس، هدایت ­هیدرولیکی اشباع خاک برای سیالات بنزین و آب به­ روش بار ثابت تعیین شد. پارامترهای منحنی­های نگهداشت ­خاک، برای آب و بنزین بر اساس مدل­های ون­گنوختن، بروکس- کوری و کمپبل برآورد شد. بعلاوه هدایت هیدرولیکی غیر اشباع به عنوان تابعی از پتانسیل ماتریک خاک به­وسیله­ مدل­های معلم- ون­گنوختن، معلم­- بروکس­- کوری، بوردین­- بروکس- کوری و کمپبل تعیین شد. مقدار پارامترهای توزیع تخلخل و پارامترهای نقطه ورود هوا در سیستم دو فازی بنزین- هوا نسبت به آب- هوا افزایش یافت. نتایج نشان داد به دلیل کشش سطحی کمتر بنزین، در مقدار معینی از فاز مایع، مکش کمتری برای خارج کردن بنزین از خاک نسبت به آب لازم است. بنابراین خاک در یک مقدار معین از فاز مایع، نگهداشت کمتری برای بنزین نسبت به آب دارد. همچنین مقیاس­سازی منحنی نگهداشت بنزین به صورت مناسبی بر مبنای تابع مقیاسی لورت انجام شد.  به دلیل لزوجت کم بنزین، هدایت هیدرولیکی اشباع محیط برای بنزین بیشتر از آب بود. لیکن در مکش­های بیشتر از حدود 30 سانتی­متر آب، هدایت هیدرولیکی محیط برای آب بیشتر بود.

کلیدواژه‌ها


عنوان مقاله [English]

Parametric Investigation of Soil Retention Functions in Two-Phase NAPL-Air System

چکیده [English]

In order to examine hydraulic behavior of LNAPLs in soil, the soil retention and hydraulic conductivity curves for gasoline and water were determined using hanging column and constant head methods, respectively. The soil retention parameters were obtained based on van Genuchten, Brooks-Corey and Campbell’s models. In addition, the soil hydraulic conductivity for both fluids were predicted based on Mualem- Brooks-Corey, Burdine- Brooks-Corey, Mualem-van Genuchten and Campbell’s functions. The results indicated that the magnitudes of the pore-size distribution parameters and the bubbling pressure parameters were increased in gasoline-air system compared to water-air system. Gasoline was retained less than water owing to its negligible surface tension, yielding less needed tension to drain gasoline out from soils. The scaling of soil-gasoline retention curve was reasonably accomplished via Levrett J-function. Due to insignificant gasoline kinematic viscosity, the saturated soil hydraulic conductivity for gasoline was higher than that for water. However, under unsaturated condition soil hydraulic conductivity for gasoline was less than that for water by increasing the matric head more than approximately 30 cm water.

کلیدواژه‌ها [English]

  • gasoline
  • Scaling functions
  • Soil hydraulic models
  • Soil retention curve
نوری م، همایی م و بای­بوردی م،  1391 الف. بررسی پارامتریک ویژگی­های هیدرولیکی خاک در حضور آلاینده نفت سفید. نشریه حفاظت منابع آب و خاک، شماره 1. صفحه­های­ 37 تا 48.
نوری م، همایی م، بای­بوردی م، 1391ب. ارزیابی پارامتریک توانایی نگهداشت خاک در حضور نفت خام در حالت سه فازی. نشریه حفاظت منابع آب و خاک، شماره 2. صفحه­های­ 15 تا 24.
Bradford SA and Leij FJ, 1996. Predicting two-and three-fluid capillary pressure-saturation relationships of porous media with fractional wettability. Water Resources Research 32(2): 251-259.
Brooks RH and Corey AT, 1964. Hydraulic properties of porous media. Hydrology Papers, Colorado State University.
Brost EJ and DeVaull GE, 2000. Non-aqueous phase liquid (NAPL) mobility limits in soil. American Petroleum Institute.
Brutsaert W, 1967. Some methods of calculating unsaturated permeability. Trans ASAE 10(3): 400-404.
Burdine N, 1953. Relative permeability calculations from pore-size distribution data. Trans AIME 198(1): 71–78.
Busby RD, Lenhard RJ and Rolston DE, 1995. An Investigation of Saturation-Capillary Pressure Relations in Two-and Three-Fluid Systems for Several NAPLS in Different Porous Media. Ground Water 33(4): 570-578.
Campbell GS, 1974. A simple method for determining unsaturated conductivity from moisture retention data. Soil Science 117(6): 311.
Chen J, Hopmans J and Grismer M, 1999. Parameter estimation of two-fluid capillary pressure-saturation and permeability functions. Advances in Water Resources 22(5): 479-493.
Childs EC and Collis-George N, 1950. The permeability of porous materials. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences  201(1066): 392-405.
Dashtaki SG, Homaee M and Khodaverdiloo H, 2010. Derivation and validation of pedotransfer functions for estimating soil water retention curve using a variety of soil data. Soil Use and Management 26(1): 68-74.
Demond AH and Roberts PV, 1991. Effect of interfacial forces on two-phase capillary pressure—saturation relationships. Water Resources Research 27(3): 423-437.
Gardner W, 1956. Calculation of capillary conductivity from pressure plate outflow data. Soil Science Society of America Journal 20(3): 317.
Helland JO and Skjaeveland S, 2006. Physically based capillary pressure correlation for mixed-wet reservoirs from a bundle-of-tubes model. SPE Journal 11(2): 171-180.
Homaee M, Dirksen C and Feddes R., 2002. Simulation of root water uptake: I. Non-uniform transient salinity using different macroscopic reduction functions. Agricultural Water Management 57(2): 89-109.
Hopmans JW, Grismer ME, Chen J and Liu Y, 1998. Parameter estimation of two-fluid capillary pressure saturation and permeability functions. US Environmental Protection Agency, National Risk Management Research Laboratory.
Jackson RD, 1972. On the calculation of hydraulic conductivity. Soil Science Society of America Journal 36(2): 380-382.
Johnson R, 1977. Assessment of Gasoline Toxicity. PEDCo Environmental , Inc. 11499 Chester Road Cincinnati, Ohio 45246.
Khodaverdiloo H, Homaee M, van Genuchten MTh and Dashtaki SG, 2011. Deriving and validating pedotransfer functions for some calcareous soils. Journal of Hydrology 399(1-2): 93-99.
Leij FJ, Russell WB and Lesch SM, 1997. Closed form expressions for water retention and conductivity data. Ground Water 35(5): 848-858.
Lenhard RJ and Oostrom M, 1998. A parametric model for predicting relative permeability-saturation capillary pressure relationships of oil–Water water systems in porous media with mixed wett ability. Transport in Porous Media 31(1): 109-131.
Lenhard RJ and Parker J, 1987. Measurement and prediction of saturation-pressure relationships in three-phase porous media systems. Journal of Contaminant Hydrology 1(4): 407-424.
Leverett M, 1941. Capillary behavior in porous media. Trans. AIME 142: 341-358.
Liu Y, Hopmans J, Grismer M and Chen J, 1998. Direct estimation of air–oil and oil–water capillary pressure and permeability relations from multi-step outflow experiments. Journal of Contaminant Hydrology 32(3): 223-245.
Lyman WJ, Reidy PJ and Levy BS, 1991. Assessing UST Corrective Action Technology: A Scientific Evaluation of the Mobility and Degradability of Organic Contaminants in Subsurface Environments. Risk Reduction Engineering Laboratory, Office of Research and Development, US Environmental Protection Agency.
Makó A, 2005. Measuring the two-phase capillary pressure-saturation curves of soil samples saturated with nonpolar liquids. Communications in Soil Science and Plant Analysis 36(4-6): 439-453.
Marquardt DW, 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics 11(2): 431-441.
Mercer J and Waddell D, 1993. Contaminant transport in groundwater. Pp. 430-439. In: Maidmentm DR, (ed). Handbook of Hydrology. McCraw-Hill New York N.Y.
Mualem Y, 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research 12(3): 513-522.
Mualem Y, 1992. Modeling the hydraulic conductivity of unsaturated porous media. Pp. 15-35. In: van Genuchten MTh, Leij FJ and Lund LJ,  Proceedings of the International Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils October 11-13, 1989, Riverside, California..
Payne F, Quinnan J and Potter S, 2008. Remediation Hydraulics. CRC Press Boca Raton, Florida.
Reible DD, Malhiet Tissa H and Mark E, 1989. Modeling gasoline fate and transport in the unsaturated zone. Journal of Hazardous Materials 22(3): 359-376.
Schuh W and Cline R, 1990. Effect of soil properties on unsaturated hydraulic conductivity pore-interaction factors. Soil Science Society of America Journal 54(6): 1509-1519.
Sharma R  and Mohamed M, 2003. Patterns and mechanisms of migration of light non-aqueous phase liquid in an unsaturated sand. Geotechnique 70(3-4): 305-313.
Soga K, Page JW and Illangasekare TH, 2004. A review of NAPL source zone remediation efficiency and the mass flux approach. Journal of Hazardous Materials 110(1-3): 13-27.
Tropea C Yarin AL and Foss JF, 2007. Springer Handbook of Experimental Fluid Mechanics, 1. Springer, Berlin.
Ustohal P, Stauffer F and Dracos T, 1998. Measurement and modeling of hydraulic characteristics of unsaturated porous media with mixed wettability. Journal of Contaminant Hydrology 33(1): 5-37.
van Genuchten MTh, 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44(5): 892-898.
Weiner ER, 2000. Applications of Environmental Chemistry: A Practical Guide for Environmental Professionals. CRC Press, New York.
Whitaker S, 1986. Flow in porous media II: The governing equations for immiscible, two-phase flow. Transport in Porous Media 1(2): 105-125
Wilson JL, Conrad S, Mason WR, Peplinski W and Hagan E, 1989. Laboratory investigation of residual liquid organics from spills, leaks, and the disposal of hazardous wastes in ground water. Final report, April 1986-August 1989. In: New Mexico Inst. of Mining and Technology, Socorro, NM (USA).
Yates S, van Genuchten MTh, Leij F and Warrick A, 1992. Analysis of measured, predicted, and estimated hydraulic conductivity using the RETC computer program. Soil Science Society of America Journal 56(2): 347-354.