استفاده تلفیقی از مدل AquaCrop و روش توماس- فیرینگ در بررسی عملکرد گندم دیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد آبیاری و زهکشی، دانشگاه تبریز

2 استاد گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

3 دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

چکیده

یکی از پیشنهادات کارشناسان برای احیای دریاچه ارومیه تبدیل اراضی آبی به دیم می­باشد، چرا که نزولات جوی کاهش یافته و تغییر اقلیم و افزایش مصارف کشاورزی موجب قطع حق‌آبه اکولوژیکی رودخانه‌ها در حوضه آبریز دریاچه ارومیه شده است، در این میان کشت گندم دیم به‌عنوان یک راهکار مفید برای جایگزینی محصولات کشت آبی از طرف کارشناسان مرتبط مطرح است. از این رو بررسی مهم‌ترین عامل محدود‌کننده عملکرد دیم یعنی میزان رطوبت قابل دسترس گیاه ضروری به‌نظر می‌رسد. بدلیل پرهزینه و زمان‌بر بودن آزمایش‌های مزرعه‌ای جهت تعیین عملکرد محصول با دقت بالا استفاده از مدل‌هایی مانند مدل AquaCrop که در آن‌ عملکرد محصول بر اساس تابعی از رطوبت در دسترس گیاه محاسبه می‌شود، مطلوب است. در این پژوهش پس از واسنجی و اعتبار‌سنجی مدل گیاهی یاد شده برای شبیه‌سازی عملکرد گندم دیم دشت تبریز در دوره آماری 35 ساله (1395- 1360)، متغیرهای هواشناسی منطقه مورد مطالعه با به‌کار‌گیری سری زمانی توماس- فیرینگ در دوره آماری مذکور برای 5 سال آتی پیش‌بینی شدند و سپس عملکرد گندم دیم توسط مدل گیاهی برای سال‌های 1396 تا 1400 تخمین زده شد. در پایان راهکار مدیریتی جهت افزایش پتانسیل تولید گندم دیم ارائه گردید. بر اساس نتایج این پژوهش، توانمندی تلفیقی مدل گیاهی و سری زمانی نامبرده به‌ترتیب در شبیه‌سازی عملکرد محصول و پیش‌بینی اطلاعات اقلیمی در منطقه بالا است. نتایج نشان داد که علیرغم عدم تغییر معنی‌دار بارش، بدلیل افزایش دما، عملکرد گندم در پنج سال آتی 13 درصد افزایش خواهد یافت. همچنین به‌دلیل مکفی نبودن بارش پیش‌بینی شده، انجام آبیاری تکمیلی به مقدار 40 میلی‌متر برای کشت گندم دیم در منطقه پیش‌بینی گردید تا پتانسیل تولید افزایش یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Using Combined AquaCrop Model and Thomas- Fering Method in Analyzing Rainfed Wheat Yield

نویسندگان [English]

  • MS Vaez Madani 1
  • A Fakheri Fard 2
  • A Majnooni- Heris 3
1 M.Sc. Graduate, Dept. of Water Eng., Faculty of Agric., Univ. of Tabriz, Tabriz, Iran
2 Prof., Dept. of Water Eng., Faculty of Agric., Univ. of Tabriz, Tabriz, Iran
3 Assoc. Prof., Dept. of Water Eng., Faculty of Agric., Univ. of Tabriz, Tabriz, Iran
چکیده [English]

One of the experts' suggestions for restoring Lake Urmia is to convert irrigated lands in to rainfed farming in the Urmia lake basin. Rainfed wheat farming might be considered as one of the effective alternatives to the irrigated areas. So, evaluating the soil available moisture as the most important limiting factor of the rainfed wheat farming is necessary. Since the field experiments are costly and time-consuming, application of the crop yield simulating models, e.g. AquaCrop which can estimate the crop yield based on soil water content with high accuracy, would be desirable. In this study, after calibration and validation of the mentioned model for simulating rainfed wheat yield in Tabriz plain during a period of 35-years (1360- 1395 HJ), the meteorological variables of the studied region were predicted for a 5-years ahead prediction interval using Thomas- Fering method. The rainfed wheat yield was then estimated using Aquacrop model for the period between 1396 and 1400 (HJ). Finally, management scenario for increasing the potential of rainfed wheat was proposed. The results of this study confirmed the ability of the conjunctive crop model and time series technique for simulating crop yield and meteorological variables in the studied region. Results showed that despite no significant change will be occurred in rainfall amount, ascending trend of the air-temperatures will cause an increase of about 13% in rainfed wheat yield during the next five years. Also, due to precipitation insufficiency for rainfed wheat farming, predicted supplemental irrigation is recommended equal to 40 mm, to increase the potential yield production.

کلیدواژه‌ها [English]

  • Calibration
  • Crop model
  • Supplemental irrigation
  • Tabriz Plain
  • Validation
  • Yield
Abdolahzadeh M, Fakherifard A, Asadi E and Nazemi AH, 2015. Modeling the effects of consumption and precipitation on the water table oscillations (case study: Ajabshir Aquifer). Water and Soil Science, University of Tabriz 26: 83-97 (In Persian).
Abedinpour M, Sarangi A, Rajput TBS, Man S, Pathak H and Ahmad T, 2012. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agricultural Water Management 110: 55–66.
Allen RG, Pereira LS, Raes D and Smith M, 1998. Crop evapotranspiration guidelines for computing crop water requirements- FAO Irrigation and Drainage Paper No. 56. Rome.
Andarzian B, Bannayan M, Steduto P, Mazraeh H, Barati ME and Rahnama A, 2011. Validation and testing of the AquaCrop Model under full and deficit irrigated wheat production in Iran. Agricultural Water Management 100: 1-8.
Bannayan M, Sanjani S, Alizadeh A, Sadeghi Lotfabadi S and Mohammadian A, 2010. Association between climate indices, aridity index and rainfed crop yield in northeast of Iran. Field Crops Research 118: 105–114.
Braun HJ, Atlin G, Payne T, 2010. Multi-location testing as a tool to identify plant response to global climate change. In: Reynolds CRP (Ed.). Climate change and crop production, CABI, London, UK.
Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burger P, Bussiere F, Cabidoche YM, Cellier P, Debaeke P, Gaudillere JP, Maraux F, Seguin B and Sinoquet H, 2003. An overview of the crop model STICS. European Journal of Agronomy 18: 309–332.
Diepen Van CA, 1989. Application of simple interpolation methods in agrometeorology, pp. 3–17 In: Gozzini, B., Hims, M. (Eds.), Proceedings of workshop on dealing on specialization, 24–25 September 1996, Toulouse. EUR 18473 EN. Office for Official Publications of the EU, Luxembourg.
Doorenbos J and Kassam AH, 1979. Yield response to water. FAO Irrigation and Drainage Paper No. 33. Rome, FAO.
Ebrahimi Azarkharan F and Moghadam Nia AR, 2013. Forecasting of drought events using Markov chain (Case study: Subbasin of Kalanak in Taleghan Basin). Extension and Development of Watershed Management 2:43-47 (In Persian).
Hadria R, Khabba S, Lahrouni A, Duchemin B, Chehbouni AG, Ouzine L and Carriou J, 2007. Calibration and validation of the STICS crop model for managing wheat irrigation in the semi-arid Marrakech/Al Haouz plain. Arabian Journal of Engineering Science 32 (1C): 87–101.
Karimi Orghani H, Rahimi Khoob A and Nazarifar MH, 2015. Calibration and validation of AquaCrop model for barely in Pakdasht region- Iran. Iranian Journal of Soil and Water Research 3:539-549 (In Persian).
Khalili K and Nazeri Tahrudi M, 2014. Modeling of annual water level changes of Urmia Lake with linear time series models. Water Management in Arid Lands 1:27-36 (In Persian).
Khalili N, Davari K, Alizadeh A, Kafi M and Ansari H, 2014. Simulation of rainfed wheat yield using AquaCrop Model, case study: Sisab rainfed researchers station, Northern Khorasan. Journal of Water and Soil 28: 930-939 (In Persian).
Khorsand A, Verdinejad VR and Shahidi A, 2014. Performance evaluation of AquaCrop model to predict yield production of wheat, soil water and solute transport under water and salinity stresses. Journal of water and Irrigation Management 1: 89-104 (In Persian).
Licker R, Johnston M, Foley A, Barford C, Kucharik CJ, Monfreda Ch and Ramankutty N, 2010. Mind the gap: how do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Global Ecology and Biogeography 19 (6): 769–782.
Meshkatee AH, Kordlazi M and Babaeian A, 2011. Determination and evaluation of Lars model in simulation of meteorological data in Golestan province. Journal of Applied researches in Geographical Science 46: 81-96 (In Persian).
Mohammadi M, Davari K, Ghahreman B, Ansari H and Hahgverdi A, 2015. Calibration and validation of AquaCrop model for simulation of spring wheat yield under simultaneous salinity and water stress. Journal of Water Research in Agriculture 3: 277-295 (In Persian).
Raes D, Steduto P, Hsiao TC and Fereres E, 2009. AquaCrop the FAO crop model to simulate yield response to water II. Main algorithms and soft ware description. Agronomy Journal 101: 438–447.
Ramirez-Rodrigues MA, Alderman PD, Stefanova L, Cossani CM, Flores D and Asseng S, 2016. The value of seasonal forecasts for irrigated, supplementary irrigated, and rainfed wheat cropping systems in northwest Mexico. Agricultural Systems 147: 76-86.
Ritchie JT, 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resource Research 8:1204–1213.
Sen Z, 1978. A mathematical model of monthly flow sequences Hydrological Sciences-Bulletin-des Sciences Hydrologiques 23 (6): 223-229.
Steduto P, Hsiao TC, Raes D and Fereres E, 2009. AquaCrop—the FAO Crop Model to simulate yield response to water I. Concepts and Underlying Principles. Agronomy Journal 101: 426–437.
Stoeckle M, Janzen D, Hallwachs W and Hanken Baker J, 2003. Draft conference report. Taxonomy, DNA and the barcode of life. Meeting held at the Banbury center. Cold Spring Harbor Laboratory, New York, NY, http://phe.rockefeller.edu/Barcode- Conference/docs/B2summary.doc.
Toumi J, Er-Raki S, Ezzahar J, Khabba S, Jarlan L and Chehbouni A, 2016. Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management. Agricultural Water Management 163: 219-235.
Zarea A, Koocheki A and Nassiri M, 2006. Trend analysis of yield, production and cultivated area of cereal in Iran during the last 50 years and prediction of future situation. Iranian Journal of Field Crops Research 1: 49-71(In Persian).