ارزیابی الگویتم توسعه و جهش یافته ازدحام ذرات در بهره‌برداری از سیستم‌های مخزنی

نوع مقاله: مقاله پژوهشی

چکیده

رشد تقاضای آب با کیفیت و کمیت مطلوب، مهندسین و برنامه­ریزان را وادار به تفکر و ارائه طرحهای پیشرفته برای بهره­برداری بهینه از سیستمهای منابع آب نموده است. روش‌های بهینه­سازی فراکاوشی مانند الگوریتم ازدحام ذرات که در این مقاله مورد بررسی قرار گرفته است، از روش‌های نوین مورد بحث در دهه­های اخیر می‌باشد. در این تحقیق یک مدل توسعه یافته از الگوریتم ازدحام ذرات بسط داده شد و به­همراه الگوریتم ازدحام ذرات با یک مسئله بهینه­سازی غیر خطی و مقید سیستم تک­مخزنی مورد ارزیابی قرار گرفت. بدین منظور ابتدا برای یک دوره پنج ساله سیستم مذکور بهینه‌سازی شد. برای مقایسه نتایج از نرم‌افزار لینگو که یک مدل برنامه‌ریزی غیرخطی می‌باشد، استفاده شده است. مقدار تابع هدف در الگوریتم توسعه یافته تنها 12/0 درصد با بهینه سراسری اختلاف نشان داده است. پس از اینکه تحلیل حساسیت پارامترها و کارآیی الگوریتم در دوره پنج ساله بررسی شد، دوره ده ساله برای بهینه‌سازی انتخاب شد. در این حالت نیز تابع هدف کمتر از 1 درصد با بهینه سراسری اختلاف داشته است. در هر دو حالت نتایج الگوریتم توسعه یافته ازدحام ذرات نسبت به الگوریتم ازدحام ذرات، بهبود یافته و قادر است از بهینه‌های محلی خارج شود. بنابراین می‌توان نتیجه گرفت که الگوریتم توسعه یافته ازدحام ذرات از توانایی بسیار بالایی جهت حل مسائل پیچیده بهره­برداری از سیستم­های منابع آب برخوردار است. 

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the Developed and Mutated Particle Swarm Algorithm (DMPSO) for Optimal Reservoir Operation

چکیده [English]

The increasing in consuming water with good quality and quantity has prompted engineers and designers to plan and present the advanced plans for optimal utilization of water resource systems. Heuristic optimization methods such as particle swarm algorithm that is investigated in this paper are among the latest methods that have been widely used in recent decades. In this study, a developed model of particle swarm algorithm was described and the particle swarm algorithm was evaluated with a nonlinear and constrained single-reservoir optimization equation. For this purpose, at the first step the system was optimized for a period of five years. Lingo software, a non-linear programming model, was used to compare the results. The value of the objective function in the developed algorithm showed only 0.12 differences with the global optimum. After analyzing the sensitivity of the parameters and the efficiency of the algorithm in the five-year period, the ten-year period was selected for optimization. In this case, the objective function had less than 1% difference with the global optimum as well. In both cases, the developed particle swarm algorithm gave better results than the particle swarm algorithm, and sticking in local optimizations value could be removed. Therefore, it could be concluded that the developed particle swarm algorithm had a high ability to solve the complex problems of water resources systems operation.

کلیدواژه‌ها [English]

  • Heuristic algorithms
  • Exploitation of reservoirs
  • optimization
  • Lingo software
  • Water Resources
Abbass HA, 2001. MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming         approach. Pp. 207- 214. In Conference Evolutionary Computation, 27-30 May, Seoul.
Afshar A, Bozorg Haddad O, Marino MA and Adams BJ, 2007. Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation. Journal of the Franklin Institute 344: 452–462.
Ahmad A, Razali SFM, Mohamed ZS and El-shafie A, 2016. The application of artificial bee colony and gravitational search algorithm in reservoir optimization. Water Resources Management 30: 2497-2516.
Bai T, Kan Y, Chang J, Huang Q and Chang F, 2017. Fusing feasible search space into PSO for multi-objective cascadereservoir optimization. Applied Soft Computing 51: 328-340.
Barros M, Tsai F, Yang S, Lopes J and Yeh W, 2003. Optimization of large-scale hydropower system operation. Journal of Water Resources Planning and Management 129(3): 178-188.
Bazaraa MS, Sherali HD and Shetty CM, 2006. Nonlinear Programming: Theory and Algorithms 3rd Edition. John Wiley and Sons,Inc., Hoboken, New Jersey.39-50.
Bellman R, 1957. Dynamic Programming. Princeton, N.J.: Princeton, University Press.
Bozorg Haddad O, Afshar A and MarinoArino MA, 2006. Honey-Bees mating optimization (HBMO) algorithm: A new heuristic approach for water resources optimization. Water Resources Management 20: 661–680.
Bozorg Haddad O, Afshar A, Adams BJ, 2005. HBMO in optimal reservoir operation. Pp. 999- 1008. Ninth International Water Technology Conference, IWTC9. 17-20 March, Sharm El-Sheikh, Egypt.
Cai X, McKinney DC and Lasdon LS, 2001. Solving nonlinear water management models using a combined genetic algorithm and linear programming approach. Advances in Water Resources 24: 667-676.
Chang  W, Luo X and Yu H, 2009. A fuzzy adaptive particle swarm optimization for long-term optimal scheduling of cascaded hydropower station. Pp. 1- 5. Power Systems Conference and Exposition. 15-18 March, Seattle, WA, USA.
Dorigo M, 1996. Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transaction on Systems. 26 (1): 29-41.
Garg H, 2016. A hybrid PSO-GA algorithm for constrained optimization problems. Applied Mathematics and Computation 274: 292-305
Glover F and Greenberg HJ, 1989. New approaches for heuristic search: linkage with artificial intelligence European. Journal of Operational Research 39: 119-130.
Holland JH, 1975. Adaption in Natural and Artificial Systems. University of Michigan Press.
Jalali MR, Afshar A and Marino MA, 2006. Improved ant colony optimization algorithm for reservoir operation. Scientia Iranica 13(3): 295-302.
Kennedy J and Eberhart R, 1995. Particle Swarm Optimization. Pp. 1942- 1948. IEEE International Conference on Neural Networks.
Kumar N and Reddy J, 2006. Ant colony optimization for multi-purpose reservoir operation. Water Resources Management 20: 879–898.
Maier HR, Simpson AR, Aaron C, Zecchin AC, Foong WK, Phang KY, Seah HY, Chan L and Tan CL, 2003. Ant colony optimization for design of water distribution systems. Journal of Water Resources Planning and Management. 129: 200-209.
Olsen AL, 1994. Penalty functions and the knapsack problem. Pp. 554-558. IEEE World Congress on Computational Intelligence, Proceedings of the First IEEE Conference. 27-29 June, Orlando, USA.
Rani D and Moreira MM, 2010. Simulation–optimization modeling: a survey and potential application in reservoir systems operation. Water Resources Management 24: 1107–1138.
Wardlaw R and Sharif, M, 1999. Evaluation of genetic algorithms for optimal reservoir system reservoir system operation. Water Resources Planning and Management. 125: 25-33.
Yuhui Shi Y and Eberhart R, 2009. Monitoring of particle swarm optimization. Frontiers of Computer Science in China 3 (1):31-37.
Zhang J, Wu Z, Cheng CT and Zhang SQ, 2011. Improved particle swarm optimization algorithm for multi-reservoir system operation. Water Science and Engineering 4(1): 61-74.