تعیین مناسب‌ترین روش زمین آماری تغییرات مکانی حداکثر بارش روزانه در حوضه آبخیز آتشگاه استان اردبیل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی آب، دانشگاه محقق اردبیلی

2 دانشجوی دکتری، مهندسی مدیریت آبخیزداری، دانشگاه تربیت مدرس، ایران

چکیده

هدف این پژوهش، انتخاب مناسب‌ترین روش درون‌یابی برای برآورد تغییرات مکانی بارش روزانه در حوضه آتشگاه اردبیل می‌باشد. برای این منظور، از آمار 9 ایستگاه باران­سنجی آب منطقه‌ای استان اردبیل استفاده گردید. پس از انجام آزمون‌های همگنی و استقلال داده‌ها، روش‌های درون‌یابی کریجینگ و کوکریجینگ جهانی با مدل برازش دایره‌ای، کروی، نمایی، گوسی و نرمال و همچنین روش­های عکس فاصله وزنی، تابع شعاع محور،  تخمین­گر عام و تخمین­گر موضعی با استفاده از نرم‌افزار ArcGIS مورد ارزیابی قرار گرفتند. به منظور مقایسه و ارزیابی روش‌های استفاده‌ شده، از معیارهای آماریMean ، RMS، ASE، MS و RMSS  استفاده شد. در هر روش به کمترین خطای آماری، کمترین رتبه و به بیشترین خطا، بیشترین رتبه اختصاص داده شد و جمع رتبه‌ها جهت مقایسه مورد استفاده قرار گرفت. نتایج نشان داد که روش کوکریجینگ جهانی با مدل برازش دایره‌ای، با کسب حداقل رتبه، مناسب‌ترین روش درون‌یابی بارش برای دوره بازگشت 2 ساله و روش کوکریجینگ جهانی با مدل برازش نرمال، با کسب پایین‌ترین رتبه، مناسب‌ترین روش درون‌یابی بارش روزانه برای دوره­های بازگشت 5، 10، 25، 50 و 100 می­باشد. مقدار متوسط وزنی حداکثر بارش روزانه حوضه آبخیز آتشگاه برای دوره­های بازگشت 2، 5، 10، 25، 50 و 100 ساله به­ترتیب، 5/37، 19/48، 49/51، 32/53، 14/54 و 69/57 میلی­متر تعیین شد.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of the Most Appropriate Geostatistical Method of Spatial Interpolation for Maximum Daily Rainfalls in Atashgah Basin in the Ardabil Province

نویسندگان [English]

  • M Raoof 1
  • S Mirzaei 2
1 Assoc. Prof. Water Engineering Department, University of Mohagheghe Ardabili, Iran
2 Ph.D. Student, Watershed Management Engineering, Tarbiat Modares University, Iran
چکیده [English]

The aim of this study was selecting the most suitable interpolation method to estimate the spatial variation of maximum daily rainfall at the Atashgah basin, Ardabil. For this purpose, data of 9 rainfall gauge stations of Ardabil Province Water Regional Company were used. Homogeneity and independence of data were tested. Universal and ordinary Kriging and Cokriging interpolation methods were evaluated by circular, spherical, exponential and Gaussian regression models and Inverse Distance Weighting (IDW), Radial Basis Function (RBF), General and local estimators using Arc GIS software. To compare and evaluate the mentioned methods, statistical parameters of Mean, RMS, ASE, MS and RMSS were used. In each method, the lowest rank was devoted to the lowest statistical error and the highest rank was devoted to the highest statistical error, and then sum of the ranks was used to compare the interpolation methods. Results showed that, in the case of 2 years return period, ordinary Cokriging by circular regression model and for 5, 10, 25, 50 and 100 years return periods, ordinary Cokriging by Gaussian regression model, with the lowest ranks, were the most suitable interpolation methods in estimation of spatial variation of maximum daily rainfall. The weighted average of the maximum daily rainfall of Atashgah basin for the return periods of 2, 5, 10, 25, 50 and 100 years were determined equal to 37.5, 48.19, 49.41, 53.32, 54.14 and 57.69 mm, respectively.

کلیدواژه‌ها [English]

  • Cokriging
  • Deterministic Models
  • Homogeneity
  • Kriging
  • Return period
climatological information: Comparison of methods for the development of precipitation distribution in Distrito Federal, Brazil. Atmospheric and Climate Sciences 3: 208-217.
Bazgeer S,  Oskuee EA,  Hagigat M and  Darban Astane AR, 2012. Assessing the performance of spatial interpolation methods for mapping precipitation data: A case study in Fars province, Iran. Trends in Applied Sciences Research 7: 467-475. (In Persian)
Chen T, Ren L, Yuan F, Yang X, Jiang S, Tang T, Liu Y, Zhao C and Zhang L, 2017. Comparison of spatial interpolation schemes for rainfall data and application in hydrological modeling. Water Journal 9(5): 343-361.
Coulibaly M and Becker S, 2007. Spatial interpolation of annual precipitation in South Africa - comparison and evaluation of methods. International Water Resources Association 32(3): 494-502.
de Mello Cunha A,  dos Santos GR,  de Souza E, Trindade SF,  Filho EIF,  Lani JL and França MM, 2012. Kriging and Cokriging for spatial interpolation of rainfall in Espirito Santo State, Brazil. Pp. 97-102. Proceedings of the 10th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, 10-13th July, Florianópolis, SC, Brazil.
Fatemi Ghiri S and Yazdan Panah H, 2012. Evaluation of different interpolation methods in estimating rainfall data in Isfahan province. Quarterly Journal of Geographic Space 12(40): 46-63. (In Persian)
Ghahroodi Tali M, 2007. Geographic Information System in 3D Environment. Academic Center for Education, Culture and Research of Tarbiat Moallem Branch, 4th Edition 273 p. (In Persian)
Ghorbani Kh, 2012. Geographical weighting regression: A method for mapping rainfall patterns in Guilan province. Journal of Water and Soil 27: 752-753. (In Persian)
Hakim Doost SY, Poor Zeidi AM and Gerami MS, 2017. Spatial analysis of shower - precipitation in Mazandaran province in the geographic information system environment (GIS). Quarterly Journal of Geographic Information 26(102): 191-203. (In Persian)
Khosravi R, Homami MR and Malekian M, 2014. Comparison of geostatistics methods in determining the best method for interpolating biological data for modeling distribution of animal species in central Iran. Journal of Applied Ecology 3(8): 55-67. (In Persian)
Khosravi Y and Abbasi A, 2015. Spatial Analysis of Environmental Data with Geostatistics. Azer Celk Publication 282 p.
Liu Y, Hu Sh, Sheng D, Chang L and Jia M, 2016. Study of precipitation interpolation at Xiangjiang river basin based on geostatistical analysis, 24th International Conference on GeoInformatics. August 14 – 20, Galway, Ireland.
Merati A, Taheri Tizro A and Parsafar N, 2017. Qualitative zoning of groundwater resources using geostatistic methods and GIS (Case study: Soleymanshah basin). Water and Soil Science-University of Tabriz 27(2): 63-76. (In Persian)
Mirzayi S, Raoof M, Rasoulzadeh A and Pour Eskandar S, 2016. Simulating flood hydrograph of Atashgah basin river of Ardabil province using optimized rainfall pattern. Journal of Water and Soil Conservation 22(5): 63-80. (In Persian)
Mohammadi J, 2006. Pedometery, Volume II: Spatial Data. Pelk Publication. First Edition 184 p. (In Persian)
Moral, F.J.2010.Comparison of different geostatistical approaches to map climate variables: Application to precipitation. International Journal of Climatology 30: 620–631.
Mozaffari Gh, Mir Mousavi H and Khosravi Y, 2012. Evaluation of geostatistics and linear regression methods in determining the spatial distribution of precipitation (Case study: Bushehr). Journal of Geography and Development 27: 63-76. (In Persian)
Rabi’e MR and Esmailian M, 2015. SPSS Comprehensive Guide. Dibagaran Publication, 2th Edition 356 p. (In Persian)
Sadeghi SH, Nouri H and Faramarzi M, 2017. Assessing the spatial distribution of rainfall and the effect of altitude in Iran (Hamadan Province). Air, Soil and Water Research 10: 1-7. (In Persian)
Safarrad T, Faraji Sabokbar H, Azizi Gh and Abbaspour R, 2013. Spatial analysis of precipitation changes in middle Zagros using geostatistics method. Journal of Geography and Development 31: 149-163. (In Persian)
Saghafian B, Razmkhah H and Ghermez Cheshmeh B, 2011. Investigating regional variations of annual precipitation user statistics (Case study: Fars province). Journal of Water Resources Engineering 4(9): 29-38. (In Persian)
Soofi rahimi M, Fakheri fard A, Dinpajooh Y, Asadi E and Ghorbani MA, 2015. Regional analysis of the maximum annual river flow data in east Azarbaijan province rivers using the L-moments method. Water and Soil Science-University of Tabriz 25(3): 253-265. (In Persian)
Stein A and Corsten LCA, 1991. Universal Kriging and Cokriging as regression procedures. Biometrics 47: 575 -587.
Vicek O and Huth R, 2009. Is Daily precipitation Gamma-distributed? Adverse effects of an incorrect use of the Kolmogorov–Smirnov test. Atmospheric Research 93: 741-758.
Vicente- Serrano SM, Saz-S´anchez MA and Cuadrat JS, 2003. Comparative analysis of interpolation methods in the middle Ebro valley (Spain): Application to annual precipitation and temperature. Climate Research 24: 161- 180.
Zhang M, Leon C, Migliaccio K. 2018. Evaluation and comparison of interpolated gauge rainfall data and gridded rainfall data in Florida, USA. Hydrological Sciences Journal 6