تأثیر قارچ شبه میکوریز Piriformospora indica بر برخی پاسخ‌های فیزیولوژیکی و بیوشیمیایی گیاه یونجه (Medicago sativa L.) تحت تنش کم‌آبی

نویسندگان

1 استادیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان

2 استادیار گروه زیست شناسی، دانشکده علوم، دانشگاه زنجان، زنجان

3 دانش آموخته کارشناسی ارشد، دانشکده علوم، دانشگاه زنجان

چکیده

قارچ اندوفیت ریشه­زی  Piriformospora indica محرک رشد گیاه  بوده و سبب القای مقاومت در گیاه میزبان تحت تنش­های زیستی و غیر­زیستی می­شود. به منظور بررسی اثر تلقیح قارچ P. indicaدر شرایط کم آبی بر گیاه یونجه، آزمایشی به صورت فاکتوریل در قالب طرح کاملا̋ تصادفی با 3 تکرار انجام شد. فاکتورهای آزمایش شامل دو سطح قارچ (تلقیح و عدم تلقیح با قارچ P. indica) و دو سطح رطوبتی (100% آب قابل استفاده (AW100%) و 30% آب قابل استفاده (AW30%)) بود. گیاهچه­های یونجه (Medicago sativa L.) تلقیح شده با قارچ و گیاهچه­های بدون تلقیح به مدت 45 روز در معرض تنش کم آبی قرار گرفتند. زیست توده بخش هوایی و ریشه­ها در اثر کلونیزاسیون قارچی افزایش یافتند که حاکی از تحریک رشد گیاه توسط قارچ می­باشد. تنش کم­آبی بطور معنی­داری سبب کاهش زیست­توده، محتوای نسبی آب برگ­ها و محتوای عناصر گردید. در این آزمایش کلونیزاسیون قارچی منجر به افزایش معنی­دار محتوای فسفر و روی، پرولین و پروتئین بخش هوایی، محتوای آهن و فنل ریشه­ها، همچنین محتوای کلروفیل و کاروتنوئیدها تحت تیمار AW 30% در مقایسه با گیاهان بدون تلقیح گردید. همچنین محتوای مالون دی­آلدهید در گیاهان تلقیح شده در هر دو سطح رطوبتی بطور معنی­داری کمتر از گیاهان بدون تلقیح قارچی بود.  به­طور کلی نتایج ما حاکی از آن است که تلقیح با قارچ P. indica اثر تنش کم آبی را در گیاه یونجه تعدیل می­نماید و تلقیح با این قارچ روش موثری در کاهش اثرات مضر تنش کم­آبی در گیاه میزبان می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Mycorrhiza-Like Fungus Piriformospora indica on Some Physiological and Biochemical Responses of Alfalfa (Medicago sativa L.) under Water Deficit Stress

نویسندگان [English]

  • S Amanifar 1
  • E Vatankhah 2
  • Z Toghranegar 2
  • A Akbari-Vahed 3
1 Assist. Prof., Dept. of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan , Iran
2 Assist. Prof., Dept. of Biology, Faculty of Science, University of Zanjan, Zanjan , Iran
3 M.Sc. Graduate, Dept. of Biology, Faculty of Science, University of Zanjan, Zanjan , Iran
چکیده [English]

The root endophyte Piriformospora indica is plant growth promoting and induces tolerance to biotic and abiotic stresses in plants. To assess the effect of P. indicainoculation onMedicago sativaL. plantsunder water deficit stress, a trial was conducted in a factorial experiment based on completely randomized design with combination of two factors, soil moisture levels (100% AW (Available Water) and 30% AW) and fungi (inoculated with P. indica and non-inoculated) in three replications. The M. sativa seedlings (inoculated or non-inoculated ) were exposed to water deficit stress for the 45 days. The plant shoot and root biomass were increased by fungal inoculation that indicated growth promoting effect of P. indica. A significant decrease in plant biomass, leaf relative water content and mineral content were observed under water deficit stress. In this study fungal inoculation caused a significant increase in P, Zn, proline and protein contents in shoot and root, root phenol and Fe contents as well as chlorophyll and carotenoid contents at 30% AW in comparison with those in non-inoculated plants. Also, malondialdehyde in inoculated plants was lower than that in non-inoculated plants under both moisture levels. Generally, our results showed that the P. indica inoculation counteracted water deficit stress conditions in M. sativa and it could be proposed as a useful tool for alleviating the adverse effects of water deficit stress in host plant.

کلیدواژه‌ها [English]

  • Biochemical responses
  • Growth responses
  • Medicago sativa L
  • Photosynthetic pigments
  • Piriformospora indica
  • Water deficit stress
Ackers P and White W R, 1973. Sediment transport: new approach and analysis. J. of the Hydraulics Division 99(11):204-254.
Alhamid A I, 1991. Boundary shear stress and velocity distributions in differentially roughened trapezoidal open channels. PhD Thesis, University of Birmingham, Birmingham, England.
Azamathulla H Md, Ahmad Z and Ghani A Ab, 2013. An expert system for predicting Manning's roughness coefficient in open channels by gene expression programming. J. of Neural Comput. and Applic. 50(5):1343-1349.
Cheng N S, 2014. Resistance coefficients for artificial and natural coarse-bed channels: Alternative approach for large-scale roughness. J. of Hydraulic Engineering, ASCE, 141(2): p.04014072.
Cheng N S, 2017. Simple Modification of Manning-Strickler Formula for Large-Scale Roughness. J. of Hydraulic Engineering, ASCE, 143(9): p.04017031.
Colebrook C F and White C M, 1937. Experiments with fluid friction in roughened pipes. Pp.367-381. Proceedings of the Royal Society of London, Series A.
Colebrook C F, 1939. Turbulent Flow in Pipes, with Particular Reference to the Transition Region between the Smooth and Rough Pipe Laws. J. ICE 4:133-156.
Colosimo C, Copertino V A and Veltri M, 1988. Friction factor evaluation in gravel-bed rivers. J. of Hydraulic Engineering 114(8):861-876.
Dupuis V, Proust S, Berni C and Paquier A, 2017. Compound channel flow with a longitudinal transition in hydraulic roughness over the floodplains. Environmental Fluid Mechanics 17(5):1-26.
Engelund F and Hansen E, 1967. A monograph on sediment transport in alluvial streams. Technical University of Denmark Stervoldgade 10, Copenhagen K.
Gemici Z, Koca A and Kaya K, 2017. Predicting the Numerical and Experimental Open-Channel Flow Resistance of Corrugated Steep Circular Drainage Pipes. Journal of Pipeline Systems Engineering and Practice, 8(3), p.04017004.
Graf W H, 1971. Hydraulics of Sediment Transport, McGraw–Hill, New York.
Graf W H, 1984. Flow resistance for steep mobile channels. Pp.341–352. In Proceedings of Workshop ‘Idraulica del territorio montano’.
Graf W, Armanini A and Di Silvio G, 1991. Flow resistance over a gravel bed: Its consequence on initial sediment movement. Fluvial Hydraulics of Mountain Regions. Lecture Notes in Earth Sciences, Berlin/Heidelberg, Springer.
Hammond F D C, Heathershaw A D and Langhorne D N, 1984. A comparison between Shield's threshold criterion and the movement of loosely packed gravel in a tidal channel. Sedimentology 31(1):51-62.
Henderson F M, 1966. Open channel flow, MacMillan Co, New York.
Ikeda S, Parker G and Kimura Y, 1988. Stable width and depth of straight gravel rivers with heterogeneous bed materials. Water Resour. Res. 24(5):713-722.
Irmay S, 1949. On steady flow formulae in pipes and channels. In Proc., IAHR 3rd Congress.
Javid S, 2011. On The Effect of Cross Section Shape on Shear Stress in Open Channel Flow. MSc Thesis, University of Islamic Azad University, Mahabad Branch, Mahabad, Iran.
Javid S and Mohammadi M, 2012. Estimation of Shear Stress in Smooth Trapezoidal Open-Channels Using Conformal Mapping. Journal of Water and Soil Science- University of Tabriz 22(2):17-26.
Javid S and Mohammadi M, 2012. Boundary shear stress in a trapezoidal channel. International J. of Engineering, Trans. A 25(4):323-332.
Jesson M, Sterling M and Bridgeman J, 2012. Modeling flow in an open channel with heterogeneous bed roughness. J. of Hydraulic Engineering 139(2):195-204.
Kamphuis J W, 1974. Determination of sand roughness for fixed beds. J. of Hydraulic Research 12(2):193-203.
Kazemipour A K and Apelt C J, 1980. Resistance to Flow in irregular Channels. Dept. of Civil Eng., Research Report Series No. CE7, University of Queensland, Australia.
Keulegan G H, 1938. Laws of Turbulent Flow in Open Channels. J. of Research of the National Bureau of Standards, Research Paper 1151, 21:707-741.
Knight D W, Demetriou J D, and Hamed M E, 1984. Boundary shear in smooth rectangular channels. J. of Hydraulic Engineering, 110(4):405-422.
Knight D W and Macdonald J A, 1979. Open channel flow with varying bed roughness. J. of the Hydraulics Division 105(9):1167-1183.
Knight D W, Alhamid A I and Yuen K W H, 1992. Boundary shear in differentially roughened trapezoidal channels. Hydraulic and Environmental Modelling 3: 3–14.
Knight D W, Omran M and Tang X, 2007. Modeling depth averaged velocity and boundary shear in trapezoidal channels with secondary flows. J. of Hydraulic Engineering 133(1):39–47.
Lane E W and Clarson E J, 1953. Progress report on studies on the design of stable channels by the bureau of reclamation. Proc. J. of the Hydraulics Division 79(280):1–30.
Lopez R and Barragan J, 2008. Equivalent roughness of gravel-bed rivers. J. of Hydraulic Engineering 134(6):847-851.
Meyer-Peter E and Müller R, 1948. Formulas for bed-load transport. In IAHSR 2nd meeting, Stockholm, appendix 2.
Mohammadi M, 2004. On the effect of channel shape on boundary shear stress distribution in open channels. Journal of Water and Soil Science- University of Tabriz 29(3):53-64.
Mohammadi M and Knight D W, 2004. Boundary shear stress distribution in a V-shaped channel. Pp.401-410. Proceeding 1st International Conference on: Hydraulics of Dams and River Structures (HDRS), Tehran, Iran.
Mohammadi M, 1998. Resistance to flow and the influence of boundary shear stress on sediment transport in smooth rigid boundary channels. PhD Thesis, University of Birmingham, Birmingham, England.
Mohammadi M, 2001. Shape effects and definition of hydraulic radius in manning's equation in open channel flow. International J. of Engineering 10(3):127.
Nikuradse J, 1933. Low of flow in rough pipes. Forschungsheft No. 361, Verein Deutscher Inginieure, Berlin, (Translated into English as NACA TM 1292, Nov. 1950).
Pillai N N, 1970. On uniform flow through smooth rectangular open channels. J. of Hydraulic Research 8(4):403-418.
Prandtl L, 1932. CDE turbulent flow in pipes and plate. Ergeb Aerodyn Versuch, Series 4, Goettingen.
Reinius E, 1961. Steady uniform flow in open channels. J. Division of Hydraulics, Bulletin 60, Royal Institute of Technology, Stockholm, Sweden.
Rouse H, 1965. Critical Analysis of Open Channel Resistance. J. of Hydraulics Div. 91(4):1-25.
SPSS Statistics 2009. Version 18. https://www.ibm.com/products/spss-statistics (accessed 14 May 2017)
Strickler M, 1923. Contributions to the question of speed formula and the roughness pay for current channels and closed lines, Messages of the world Office for water management, Bern, Switzerland. N. 16 (in German).
Sturm T W, 2010. Open Channel Hydraulics. New York: McGraw-Hill.
Thijsse J T, 1949. Formulae for the friction head loss along conduit walls under turbulent flow. 3(4):1–11. Proc. 3rd IAHR Congress, Grenoble, France.
Tominaga A, Nezu I, Ezaki K and Nakagawa H, 1989. Three dimensional turbulent structure in straight open channel flows. J. of Hydraulic Research 27(11):149–173.
Tzelepis V, Moutsopoulos K N, Papaspyros J N and Tsihrintzis V A, 2015. Experimental investigation of flow behavior in smooth and rough artificial fractures. J. of Hydrology 521:108-118.
Whiting P J and Dietrich W E, 1990. Boundary shear stress and roughness over mobile alluvial beds. J. of Hydraulic Engineering 116(12):1495-1511.
Yang S Q and Lim S Y, 2005. Boundary shear stress distributions in trapezoidal channels. J. of Hydraulic Research 43(1): 98–102.
Yang S Q, 2010. Depth-averaged shear stress and velocity in open channel flows. J. of Hydraulic Engineering 136(11):952–958.
Yen B C, 1992. Channel flow resistance: centennial of Manning's formula. Water Resources Publication, Colorado, USA, 1-136.
Yuen Y H K, 1989. A study of Boundary Shear Stress, Flow Resistance and Momentum Transfer in Open Channels with Simple and Compound Trapezoidal Cross-section. PhD Thesis, Univ. of Birmingham, Birmingham, England.
Zeng C, Li C, Tang H, Wang L and Mao J, 2015. Experimental study of depth-limited open-channel flows over a gravel bed. International J. of Sediment Research 30(2):160-166.