توسعه مدل‌های تحلیلی- احتمالاتی به‌منظور برآورد رواناب شهری

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد مهندسی منابع آب، دانشگاه شهید باهنر، کرمان

2 استادیار گروه علوم مهندسی آب، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد تبریز، تبریز

3 دانشیار گروه مهندسی آب، دانشگاه تبریز، تبریز

چکیده

هدف از این تحقیق، ارزیابی چند روش توسعه مدل‌های تحلیلی- احتمالاتی برای برآورد حجم رواناب می‌باشد و نشان داده می‌شود که مدل‌های تحلیلی می‌توانند با درجه پیچیدگی متفاوت بر اساس تبدیل‌های مختلف بارش- رواناب به‌دست آیند. در این مطالعه واسنجی و صحت‌سنجی مدل‌های تحلیلی با پیروی از یک روش ترکیبی انجام گردید.  کارآیی انواع مختلف تبدیل‌های بارش- رواناب در بخش غربی شهر کرمان مورد سنجش قرار گرفت. نتایج مدل تحلیلی برای رواناب مشاهداتی و شبیه‌سازی‌شده با مدل مدیریت رگبار (SWMM) مورد مقایسه قرار گرفت. با مشاهده خروجی‌ها می‌توان دریافت که اگر برای ضریب رواناب یک مقدار در محدوده 7/0- 6/0 درنظر گرفته شود، مدل تحلیلی- احتمالاتی نوع اول می‌تواند نتایجی نزدیک به نتایج شبیه‌سازی پیوسته مدل مدیریت رگبار با اختلاف نسبی کم‌تر ارائه دهد. به‌منظور ارزیابی اطمینان‌پذیری عملکرد مدل تحلیلی، با ثابت در نظر گرفتن ضریب رواناب منطقه نفوذپذیر، مساحت بخش نفوذناپذیر حوضه به‌تدریج افزایش داده شد. نتایج به‌دست آمده بیان‌گر آن است که با افزایش تدریجی نفوذپذیری حوضه، اثر ضریب رواناب منطقه نفوذپذیر بر حجم رواناب سالانه از حساسیت کم‌تری برخوردار خواهد بود. با استفاده از این مدل، تطابق مناسبی بین داده‌های مشاهداتی و محاسباتی به‌دست آمد. مدل‌های تحلیلی- احتمالاتی به‌دلیل محاسبات کم‌تر نسبت به مدل‌های شبیه‌سازی پیوسته، می‌توانند به‌عنوان یک مدل شبیه‌سازی پیوسته در تحلیل سیستم‌های رواناب شهری مورد استفاده قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Development of Analytical-Probabilistic Models for Estimating Urban Storm Water Runoff

نویسندگان [English]

  • M Moradi 1
  • S Darbandi 2
  • S darbandi 3
1 M.Sc. Student, Graduate of Water Resources Eng., Dept. of Water Engineering, ShahidBahonar Univ., Kerman
2 Assist.Prof., Dept. of Water Eng., Faculty of Agric., Islamic Azad University., Tabriz Branch., Tabriz
3 Associ. Prof., Dept. of Water Eng., Faculty of Agric., University of Tabriz, Tabriz
چکیده [English]

The aim of this research is to evaluate some methods of developing analytical-probabilistic models in runoff volume estimation and it is shown that analytical models can be obtained with varying degrees of complexity based on different rainfall-runoff conversions. In this research, calibration and validation of analytical models were evaluated following a hybrid method. The efficiency of different types of rainfall-runoff transformations was measured in the western part of Kerman. The results of the analytical model for the observed and simulated runoff were compared with the storm management model (SWMM).According to outputs if for a runoff coefficient a value is considered in the range of 0.6-0.7, the first-order analytic-probabilistic model yields close results to the simulation ones that are obtained from the storm management model with less relative difference.In order to evaluate the reliability of the analytical model performance, with considering constant value for runoff coefficient, pf permeable zone, area of the impervious zone of the basin. Was gradually increases the results indicate that with the gradual increase of the permeability of the basin, the effect of the permeable area runoff coefficient on the annual runoff volume. Is less sensitive Using this model, a good accommodation between observational and computational data. Was obtained Analytical-probabilistic models due to less computations than continuous simulation models can be used as a continuous simulation model for analyzing urban runoff systems.

کلیدواژه‌ها [English]

  • Rainfall-runoff
  • Urban runoff
  • Storm Water management model (SWMM)
  • nalyticalprobabilistic models
Adams BJ, Papa F, 2000. Urban Stormwater Management Planning with Analytical Probabilistic Models. Wiley, New York, NY.
ASCE, 1992. Design & Construction of Urban Stormwater Management Systems, New York, NY,
Basso S, Schirmer M, Botter G, 2016. A physically‐based analytical model of flood‐frequency curves. Geophysical Research Letters. 43(17), 9070-9076.
Benjamin JR, Cornell CA, 1970. Probability, Statistics and Decision for Civil Engineering. McGraw-Hill, New York.
Branham TL, Behera PK, 2010. Development of a rainfall statistical analysis tool for analytical probabilistic models for urban stormwater management analysis. In World Environmental and Water Resources Congress. 3281-3290.
Burger G, Sitzenfrei R, Kleidorfer M, Rauch W, 2014. Parallel flow routing in SWMM 5. Environment Model Software. 53, 27–34.
Chen JY, Adams BJ, 2007. Development of Analytical Models for Estimation of Urban Stormwater Runoff. Journal of Hydrology. 336 (3–4):458–69.
Dan`azumi S, Supiah S, Aris A, 2013. Development of Analytical Probabilistic Model Parameters for Urban Stormwater Management. Sains Malaysian. 42(3), 325-332.
Darbandi S, FakheriFard A, HosseinzadehDalir A, Sadraddini, SA, Farsadyzadeh D, 2009. Rainfall-Runoff Hydraulic Simulation Using Diffusive Wave Model in KamanajOlia Watershed.Journal of Agriculture Science. 18(1), 17-26.
Soltani A, Gorbani MA, FakheriFardA, DarbandiS, FarsadizadehD. Genetic Programming and Its Application in Rainfall-Runoff Modeling. Journal of Agriculture Science.4, 62-71.
Eagleson PS, 1972. Dynamics of flood frequency. Water Resources Research. 8 (4), 878–897.
Eagleson PS, 1978. Climate, Soil, and Vegetation 2, the Distribution of Annual Precipitation Derived from Observed Storm Sequences. Water Resources Research. 14 (5), 713–721.
Guo Y, 1998. Development of Analytical Probabilistic Urban Stormwater Models. Ph.D. Dissertation, Department of Civil Engineering, University of Toronto, Toronto, Ont.
Guo Y, Adams BJ, 1998. Hydrologic Analysis of Urban Catchments with event-based Probabilistic Models I. Runoff volume. Water Resources Research. 34 (12), 3421–3431.
Guo Y, Markus M, 2011. Analytical Probabilistic Approach for Estimating Design Flood Peaks of Small Watersheds. Journal of Hydrologic Engineering. 16(11):847-57.
Howard CD, 1976. Theory of Storage and Treatment-Plant Overflows. Journal of the Environmental Engineering. 102(4):709-22.
Huber WC, Dickinson RE, (1992). Stormwater Management Model User’s Manual, Version 4. Environmental Protection Agency, Georgia, 500 pp.
Li K, Kim H, Pak G, Jang S, Kim L, Yoo C, Yun Z, Yoon J, 2010. Cost-Effectiveness Analysis of Storm Water Best Management Practices (BMPs) In Urban Watersheds. Desalination and Water Treatment. 19(1-3), 92–96.
Lowe SA, 2010. Sanitary sewer design using EPA storm water management model (SWMM). Computer Applied Engineering Education. 18 (2), 203–212.
Papa F, 1997. Analytical Probabilistic Models for Urban Stormwater Management Planning, M.Sc. Thesis, Department of Civil Engineering. University of Toronto, Toronto, Ont.
Raimondi A, Becciu G, 2014. Probabilistic Modeling of Rainwater Tanks. Procedia Engineering. 16th Conference on Water Distribution System Analysis, Milan, Italy. 89:1493-9.
Ranjbaran P, 2010. Qualitative Modeling of Pollution Load of Surface Runoff of Tehran Basin with Probabilistic-Analytical Approach, M. Sc. Thesis, Department of Irrigation & Reclamation Engineering, University of Tehran, Karaj.
Rivera P, Gironas J, Montt JP, Fernandez B, 2005. An Analytical Model for Hydrologic Analysis in Urban Watersheds. In 10th International Conference on Urban Drainage.
Rossman LA, 2010. Storm Water Management Model User's Manual, Version 5.0. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency.
Salajegheh A, Forootan E, Mahdavi M, Ahmadi H, Sharifi F and MalekMohammadi B, 2012. Runoff Estimation in Urban Watersheds by Analytical Models (Case Study: The Part of District No.22 of Tehran City). Journal of Water and Wastewater 23(1): 47-56.
Urbonas B, Stahre P, 1993. Stormwater Best Management Practices and Detention for Water Quality, Drainage and CSO Management. Prentice Hall.