کاربرد فاصله تاکسنومیک و خوشه‌بندی برای تعیین میزان نزدیکی و شباهت خاک‌های آهکی، گچی و شور آذربایجان شرقی در دو سیستم طبقه‌بندی خاک

نویسندگان

1 دانشجوی دکتری، گروه علوم خاک، دانشکده کشاورزی، دانشگاه تبریز

2 استاد، گروه علوم خاک، دانشکده کشاورزی، دانشگاه تبریز

3 دانشیار، گروه علوم خاک، دانشکده کشاورزی، دانشگاه تبریز

4 استادیار، گروه آمار، دانشکده علوم ریاضی، دانشگاه تبریز

چکیده

در این تحقیق کارایی فاصله تاکسنومیک و خوشه­بندی برای پی بردن به میزان همبستگی و ارتباط خاک­های آهکی، گچی و شور مناطق نیمه خشک و خشک آذر بایجان شرقی بر اساس سیستم های رده­بندی خاک آمریکایی (Soil Taxonomy) و مرجع جهانی (World Reference Base) مطالعه شده است. فاصله تاکسنومیکی با استفاده از نرم­افزار R و Numerical Taxonomy با کاربرد نرم­افزار Excel و خوشه­بندی بوسیله نرم­افزارهای R و SPSS محاسبه و ارتباط آنها در دو سیستم بررسی گردید. سپس، ضمن استفاده از میانگین داده­های کمی فیزیکوشیمیایی، نتایج حاصل از محاسبات و خوشه­بندی با همدیگر و نیز با نظر متخصصین مقایسه شد، که همبستگی کمی خوبی بین سالیدها با سالونچاک­ها و سالونتزها، جیپسیدها با جیپسی­سول­ها، آرجیدها با لووی­سول­ها، زرپت­ها با کلسی و جیپسی­سول­ها وجود داشت. نتایج حاصل از چهار روش تقریبا با همدیگر هماهنگ و شبیه بوده، اما استفاده از هر یک محدودیت­ها و مهارت­های خاص خود را دارا می­باشد. روش مفهومی بر اساس خصوصیات کیفی بارز خاک­ها ( فاکتورها یا فرآیندهای تشکیل خاک، افق­های مشخصه و در کل خصوصیات مورفولوژیکی بارز خاک­های آهکی، گچی و شور) و کددهی آنها بوده که برای دقیق بودن این روش اطلاعات و مهارت کافی و تخصصی ضروری است. در روش­های سنتروئیدی تاکسنومی عددی و خوشه­بندی، داده­های کمی حاصل از آزمایشات فیزیکوشیمیایی استفاده شده و نتایج این روش­ها بیشتر قابل اعتماد می­باشد. آسان­ترین روش استفاده از نرم­افزار تاکسنومی عددی بوده که با گزینه های ساده و بدون هیچگونه برنامه­نویسی، ماتریس تشکیل داده و ضمن نرمال کردن داده­ها، بر مبنای معادله ماهالانوبیس فاصله تاکسنومیکی را به سادگی در دسترس قرار می­دهد. در کل این ابزارها و محاسبات برای یافتن ارتباط بین خاک ها در سیستم­های مختلف رده­بندی مفید بوده و از نظر کمی یافته­های عددی برای ارتباط دادن و همبستگی کل آن ها در سیستم­های رده­بندی مخصوصا ST وWRB که در ایران پرکاربرد هستند توصیه می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Taxonomic Distance and Clustering to Determine the Proximity and Similarity of Calcareous, Gypsiferous and Saline Soils of Eastern Azerbaijan in two soil classification systems

نویسندگان [English]

  • V Montakhabi Kalajahi 1
  • AA Jafarzadeh 2
  • SH Oustan 2
  • F Shahbazi 3
  • R Arabi 4
1 Ph.D Student, Dept. of Soil Sci., Univ. of Tabriz. Iran
2 Prof., Dept. of Soil Sci., Univ. of Tabriz. Iran
3 Assoc. Dept. of Soil Sci., Univ. of Tabriz. Iran
4 Assist. Dept. of Statistics, Univ. of Tabriz. Iran
چکیده [English]

In this research work taxonomic distance and clustering performance for understanding of relation and correlation between calcareous, gypsiferous and saline soils of East Azerbaijan semi-arid and arid regions were studied based on soil taxonomy (ST) and world reference base (WRB) systems. The taxonomic distance by R software and Numerical Taxonomy in Excel and clustering using R and SPSS softwares were calculated and their relationship in two systems was investigated. Then using the average amount of physicochemical quantitative data, the results of calculation and clustering compared with each other and so with opinion of the experts, that there was a good quantitative correlation between salids and salonchaks, salonetz, gypsids and gypsisols, argids and luvisols, xerepts and calcisols and gypsisols. The obtained results of four methods were almost similar and identical with each other, but use of each one had its own limits and skills. The conceptual method was based on the dominant qualitative identifiers (soil-forming factors or processes, diagnostic horizons and in general dominant morphological properties of calcareous, gypsiferous and saline soils) and coding of them, that sufficient information or knowledge and skills are necessary to achieve a good accuracy in this method. The quantitative physicochemical data were used in the centroid-based approaches numerical taxonomy and clustering and results of these methods are more reliable. The easiest method was Numerical Taxonomy, which with simple options and without any programing, forms matrix and by normalizing data, the Mahalanubis equation makes the taxonomic distance easily available. In general, these tools and calculations are useful for finding the relationship between soils in different classification systems, and quantitatively numerical findings for their correlation and association in classification systems, especially ST and WRB, which are widely used in Iran are recommended.

کلیدواژه‌ها [English]

  • classification
  • Clustering
  • Numerical Taxonomy
  • R studio software
  • Taxonomic distance
Abasi G. 2014. Soil development at various geomorphologic units and surfaces based on some indices in Marand Region. Ph.D. Dissertation. Tabriz University, Iran (in Farsi).
Ahrens RJ, Rice TJ and Eswaran H, 2003, Soil clas­sification: past and present. [in:] Eswaran H. et al. (eds), Soil Classification: A Global Desk Reference. CRC PRESS, Boca Raton, London, New York, Wash­ington, D.C.: 19–25.
Anonymous, 2014. Keys to Soil Taxonomy (12th ed.). United States Department of Agriculture, Naturaral Resources Conservation Service, Soil Survey Staff, Washington, DC.
Baier T and Neuwirth E, 2007. Excel :: COM :: R. Comput. Stat. 22, 91–108.
Blum WEH and Laker MC, 2003. Soil classification and soil research. Pp. 43–49. In: Eswaran H, Rice T, Ahrens R, Stewart BA (eds.), Soil classification: a Global Desk Reference. CRC PRESS, Boca Raton, London, New York, Washington, DC.
Dunn G and Everitt BS, 1982. An Introduction to Mathematical Taxonomy. University Press, Cambridge, Londan.
Foroughifar H. 2011. Evaluation of soil quality factors and their relationship with soil evolution by geostatistical in Dasht-e-Tabriz. Ph.D. Dissertation. Tabriz University, Iran (in Farsi).
Hole FD and Hironaka M, 1960. An experiment in ordination of some soil profiles. Soil Science Society of America Proceedings 24, 309–312.
I.R. of Iran Meterological Organization (IRIMO), Available online at http://www.irimo.ir/.
IUSS Working Group WRB. 2014, update 2015. World Reference Base for Soil Resources, International Soil Classification System for Naming soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. FAO, Rome.
Jafarzadeh AA and Zink JA, 2000. Worldwide distribution and sustainable management of soils with gypsum. Proceedings of international symposium on desertification, 13-17 June, Konya, Turkey.
Good IJ, 1965. ‘Categorization of classification’, in Mathematics and Computer Science in Medicine and Biology, HMSO, London, Pp115–128.
Jungerius PD, van den Ancker JAM. 2008. The conversion of a national soil classification to the World Reference Base. Problems met in Svete, Latvia. Pp. 120–121. In: Blum WH, Gerzabek MH, Vodrazka M. (eds.), EUROSOIL 2008, Book of Abstracts. BOKU, Vienna, Austria.
Kemp C and Tenenbaum B, (2008) ‘Discovery of structural form’, Proceedings of the National Academy of Sciences, vol 105, no 31, Pp10687–10692.
Kittrick JA and Hope EW. 1971. A procedure for particle size separations of soil for x-ray diffraction. Soil Sci. Soc. Am. Proc. 35: 621-626.
Krasilnikov PV. 2002. An Experience in Correlating World Reference Base for Soil Resources with National Soil Classifications. Transactions of the 17th World Congress of Soil Science. 14-21 August 2002, Bangkok, Thailand, CD-ROM, Pp. 2031-1–2031-10.
Kunze GW and Dixon JB. 1996. Pretreatment for mineralogical analysis. In: A, Klute, (ed.), Methods of soil analysis, part 1. Soil Sci. Soc. Am. Madison, Wisconsin, USA.
Láng V, Fuchs M, Waltner I, Michéli E. 2010. Taxonomic distance measurements applied for soil correlation. Agrokémiaés Talajtan. 59 (1): 57–64.
Láng V, Fuchs M, Waltner I and Michéli E. 2013. Soil taxonomic distance, a tool for correlation: As exemplified by the Hungarian Brown Forest Soils and related WRB Reference Soil Groups. Geoderma 192: 269–276.
Mahmoodi S. 1998. Gypsiferous soils: characteristics, management and land suitability evaluation. Soils and water, Special Issue, Vol. 12(3).
Mehra OP and Jackson ML. 1958. Iron oxide removal from soils and clay by a dithionate citrate system with sodium bicarbonate. Clays and Clays Minerals. 7: 317-327.
Michéli E, Fuchs M, Hegymegi P and Stefanovits P. 2006. Classification of the major soils of Hungary and their correlation with the World Reference Base for Soil Resources (WRB). Agrokémia és Talajtan 55 (1): 19–28.
Minasny B, McBratney AB, 2007. Incorporating taxonomic distance into spatial prediction and digital mapping of soil classes. Geoderma 142: 285–293.
Minasny B, McBratney AB and Hartemink AE, 2009. Global pedodiversity, taxonomic distance, and the World Reference Base. Geoderma 155: 132–139.
Schad P. 2008. New wine in old wineskins: Why soil maps cannot simply be “translated” from WRB 1998 into WRB 2006. In: Blum WH, Gerzabek MH, Vodrazka M.(eds.), EUROSOIL 2008, Book of Abstracts. BOKU, Vienna, Austria.120pp.
Schlichting E. 1986. Introduction to soil science. Paul Parey, Hamburg and Berlin, Germany (in German).
Servati M. 2014. Comparasion Parametric, MicroLEIS, Fuzzy Set Theory and Analytical Hierarchy Process for land suitability evaluation of some crops in Khajeh region. Ph.D. Dissertation. Tabriz University, Iran (in Farsi).
Shi XZ, Yu DS, Xu SX, Warner ED, Wang HJ, Sun WX, Zhao YC and Gong ZT, 2010. Cross-reference for relating genetic soil classification of China with WRB at different scales. Geoderma 155, 344–350.
Shoba SA. (Ed.), 2002. Soil Terminology and Correlation, 2nd edition. Centre of the Russian Academy of Sciences, Petrozavodsk. 320 pp.
Tryon R. 1939. Cluster analysis. New York: McGraw Hill.
Van Huyssteen CW, Michéli E, Fuchs M and Waltner I. 2014. Taxonomic distance between South African diagnostic horizons and the World Reference Base diagnostics. Catena. 113: 276–280.
Webster R, 1977. Quantitative and numerical methods in soil classification and survey. Monographs on Soil Survey.Clarendon Press, New York. Pp. 130–144.