بسط مدل زمانی و مکانی انتشار نمک در شرایط آزمایشگاهی

نویسندگان

1 دانشجوی دکتری مهندسی منابع آب، گروه مهندسی آب، دانشگاه تبریز

2 استاد گروه مهندسی آب، دانشگاه تبریز

3 دانشیار گروه مهندسی آب، دانشگاه تبریز

4 استادیار گروه مهندسی مکانیک، دانشگاه تبریز

چکیده

در این مطالعه، مدل زمانی و مکانی انتقال نمک، با استفاده از آزمایش تونل باد، مورد بررسی واقع شد. در این مدل، از چهار عامل مهم شامل زمان، فاصله از منبع نمکی، شوری (EC) و سرعت باد استفاده شد که در آن شوری به عنوان متغیر وابسته و بقیه متغیرها  به عنوان متغیرهای مستقل در نظر گرفته شدند. با استفاده از مدل آزمایشگاهی مذکور، مقدار شوری اندازه‌گیری شده و با مقدار نظیر محاسبه شده از مدل رگرسیونی مقایسه گردید. معیارهای ارزیابی شامل آماره‌های ضریب تعیین (R2)، جذر میانگین مربعات خطا (RMSE) و متوسط قدر مطلق خطاها (MAE) بود که در این مطالعه به‌ترتیب، معادل R2=0.96 ، RMSE= 79.12 µs/m  و MAE= 46.15 µs/m بدست آمدند. با توجه به معیارهای ارزیابی فوق می‌توان نتیجه گرفت که دقت مدل رگرسیونی ارائه شده جهت ارزیابی انتقال گرد نمک در زمان‌ها و فواصل مختلف و بازای سرعت‌های مختلف باد  بسیار خوب است.

کلیدواژه‌ها


عنوان مقاله [English]

Development of Spatial and Temporal Model of Salt Emission under the Laboratory Condition

نویسندگان [English]

  • M Abdoilahzadeh 1
  • A Fakheri-Fard 2
  • Y Dinpazhoh 3
  • M Jafari 4
1 Ph.D. Candidate, Dept. of Water Engineering, Univ. of Tabriz, Iran
2 Prof., Dept. of Water Engineering, Univ. of Tabriz, Iran
3 Assoc. Prof., Dept. of Water Engineering, Univ. of Tabriz, Iran
4 Assist. Prof., Dept. of Mechanic Engineering, Univ. of Tabriz, Iran
چکیده [English]

In this study, temporal and spatial model of salt transfer was investigated using a wind tunnel testing. In this model, four variables namely time, distance from the salty source, salinity and wind speed were used in which salinity was considered as a dependent variable and the others remained variables were considered as the independent variables. By use of this model, the amounts of measured and calculated EC were compared with the regression model output. The evaluation criteria used here were coefficient of determination (R2), root mean square error (RMSE) and mean absolute error (MAE). The values of these criteria were obtained as R2=0.96, RMSE= 79.14 µs/m and MAE= 46.15 µs/m. According to the mentioned criteria, it could be concluded that the precision of the proposed regression model in evaluating the salt dust transfer in different spaces and times as well as in different wind velocities was very good.

کلیدواژه‌ها [English]

  • Regression Model
  • salinity
  • Transmission of salt
  • Wind speed
  • Wind tunnel
Alizadeh H, 1990. Soil erosion and conservation. Astaneh Quds Razavi Press. 285p (In Persian).
Anonymous, 2015. Report of Urmia Lake restoration program, Urmia Lake - Drought and possible threats. http://ulrp.sharif.ir/page .
Bryan RB, 1968. The development, use and efficiency of indices of soil erodibility. Geoderma 2: 5-26.
Chepil WS and Milne RA, 1941. Wind erosion in relation to roughness of the surface. Soil Science 52: 417-433.
Draxler RR, Gillette DA and Kirkpatrick J S, 2001. Estimating PM10 concentrations from dust storms in Iraq, Kuwait, and Saudi Arabia. Atmospheric Environment 35: 4315–4330.
Ekhtesasi MR, 1999. Preparation of a sensitivity map for erosion of the Yazd plain lands with the help of wind erosion meter. M.Sc. Thesis. Faculty of Natural Resources, University of Tehran (In Persian).
Hagen LJ, 1991. A wind erosion prediction system to meet user needs. J. Soil Water Conservation. 4(2): 105–111.
Hagen LJ, 2004. Evaluation of the wind erosion prediction system (WEPS) erosion sub model on cropland fields. Environmental Modeling & Software 19: 171-176.
He J, Cai Q and Cao W, 2013. Wind tunnel study of multiple factors affecting wind erosion from cropland in Agro- pastoral area of Inner Mongolia. China. Journal of Mountain Science 10: 68-74.
Hosseini M and Solatifar S, 2010. Compilation of technical knowledge on the extraction of sodium sulfur from Lake Urmia by non-evaporative method. Journal of Applied Chemistry Sciences 12(4):31-23 (In Persian).
Lian-You L, Shang-Yu G, Pei-Jun S, Xiao-Yan L, and Zhi-Bao D, 2003. Wind tunnel measurements of adobe abrasion by blown sand: profile characteristics in relation to wind velocity and sand flux. Journal of Arid Environment 53(3): 351-363.
Lu H and Shao Y, 2001. Toward quantitative prediction of dust storms: an integrated wind erosion modeling system and its applications. Environmental Modeling & Software 16: 233-249.
Rasoulzadeh S and Bozorg-Hadad A, 2009. Comparison of artificial neural network and multivariate linear regression in prediction of reservoir discharge rate in Karaj dam. 3rd Iranian Water Resources Management Conference, 14-16 October, Faculty of civil engineering, University of Tabriz, Iran (In Persian)
Rawls WJ, Gish TJ and Brakensiek DL, 1991. Estimating soil water retention from soil physical properties and characteristics. Advances in Soil Science 9: 213–234.
Refahi H, 2000. Wind erosion and control of it. Tehran University Press, 320p (In Persian).
Shao Y, 2000. Physics and Modeling of Wind Erosion. Kluwer Academic Publishers: Dordrecht.
Wagner LE and Hagen LJ, 2001. Application of WEPS generated soil loss components to assess off-site impacts. In: Stott DE, Mohtar RH and Steinhardt GC, Sustaining the Global Farm. Selected papers from the 10th International Soil Conservation Meeting held May 24- 29, 1999 at Purdue University and the USDA-ARS National Soil Erosion Research Laboratory.
Werner M, Tegen I and Harison SP, 2002. Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions. Journal of Geophysics 107 (24): 4744–4763.
Zhang J, Shao Y and Hung N, 2014.  Measurements of dust deposition velocity in a wind- tunnel experiment. Atmospheric Chemistry and Physics 14: 8869- 8882.
Zhou CH, Gong SL and Zhang XY, 2008. Development and evaluation of an operation SDS forecasting system for East Asia: CAUACE/DUST. Atmospheric Chemistry and Physics 8: 787–798.