ارزیابی عملکرد مدل‌های سری زمانی چند متغیره تلفیقی، MPAR و MPAR-ARCH در مدل‌سازی دبی جریان رودخانه با درنظر گرفتن عوامل مؤثر هواشناسی (مطالعه موردی: رودخانه نازلوچای)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه

2 دانشجوی دکتری، گروه علوم و مهندسی آب دانشکده کشاورزی، دانشگاه بیرجند، بیرجند

3 دانشجوی دوره کارشناسی ارشد، گروه مهندسی آب دانشکده کشاورزی، دانشگاه ارومیه، ارومیه

چکیده

بیش از سه دهه است که هیدرولوژیست­ها، استفاده از مدل­های چندمتغیره را جهت توصیف و مدل­سازی پدیده­های پیچیده هیدرولوژی، توصیه می­کنند. در مدل­های چند متغیره با دخالت دادن عوامل مؤثر، می­توان نتایج توصیف، مدل­سازی و پیش­بینی متغیرهای مختلف را بهبود بخشید. هم­چنین از آنجا که مدل­های غیر­خطی واریانس ناهمسان شرطی، بخش باقی­مانده مدل­های خطی را به‌طور رضایت­بخشی مدل می­کنند، انتظار می­رود، با ترکیب مدل­های خطی و غیر­خطی، دقت مدل­سازی و پیش­بینی­ها افزایش ­یابد. در این مطالعه، دو مدل چند متغیره تناوبی آرما و چند متغیره تلفیقی با واریانس ناهمسان شرطی جهت مدل­سازی دبی ماهانه رودخانه نازلوچای واقع استان آذربایجان غربی در دوره آماری 1390-1341 با لحاظ مؤلفه‌های دما و بارش ایستگاه سینوپتیک ارومیه مورد مقایسه قرار گرفتند. نتایج بررسی و صحت­سنجی داده­های مدل­شده نشان داد که هر دو مدل مورد بررسی دارای دقت خوبی در مدل­سازی دبی جریان هستند. هم­چنین نتایج نشان داد که مدل چند متغیره تلفیقی با واریانس ناهمسان شرطی با دخالت دادن پارامترهای مؤثر بر دبی جریان از دقت بیشتری نسبت به مدل چند متغیره تناوبی آرما برخوردار است. هر دو مدل نقاط بیشینه و کمینه دبی­ها را با دقت مناسبی تخمین زده­اند. نتایج نشان داد که با تلفیق دو مدل چند متغیره تناوبی آرما و غیرخطی خودهمبسته با واریانس ناهمسان شرطی ، میزان خطای مدل حدود 16 درصد در مقایسه با مدل چند متغیره تناوبی آرما کاهش می­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Performance Evaluation of Combined Multivariate Time Series, MPAR and MPAR-ARCH Models for Modeling River Flow Series Considering the Effective Meteorological Components (Case Study: Nazloochai River)

نویسندگان [English]

  • K Khalili 1
  • M Nazeri Tahroudi 2
  • M Abbaszadeh Afshar 3
1 Assist. Prof., Water Eng. Dept., Faculty of Agric., Univ. of Urmia, Iran
2 Ph.D. Student., Sci and Water Eng. Dept., Faculty of Agric., Univ. of Birjand, Iran
3 Former M.Sc. Student., Water Eng. Dept., Faculty of Agric., Univ. of Urmia, Iran
چکیده [English]

Applying multivariate models in describing and modeling complicated hydrological events has been recommended by hydrologists in the recent three decades. In fact, employing effective factors in the multivariate models can improve the results of describing, modeling and predicting different variables. Furthermore, nonlinear conditional heteroscedastic models can be used for modeling linear residual part of time series and it is expected that combining the linear and nonlinear models increases the accuracy of modeling and forecasting results. In this study the two multivariate periodic ARMA and multivariate combined with the conditional heteroscedasticity models were compared and used to model Nazloochai River discharge located at the West Azerbaijan Province by considering air temperature and precipitation variables during the period of 1962-2011.The results of the models evaluations and verifications showed that both of the models had acceptable accuracy in modeling of the river flow discharge. Also results indicated that the combined conditional heteroscedasticity multivariate models involving the effective parameters of river flow series had more accuracy than multivariate periodic ARMA model. The both models estimated the maximum and minimum points of discharge series correctly. Also the results showed that by combining two multivariate periodic ARMA and nonlinear autoregressive conditional heteroscedastic models the error was decreased about 16% in comparison with the error of the periodic ARMA model.

کلیدواژه‌ها [English]

  • Autoregressive Conditional Heteroscedastic
  • Multivariate models
  • Precipitation
  • River flow
  • Seasonal Models
  • Temperature
 
Engle RF, 1982. Autoregressive conditional heteoscedasticity with estimates of the variance of United Kingdom inflations. Journal of Econometrica (50): 987-1007.
Fiering MB, 1964. Multivariate techniques for synthetic hydrology. Journal of the Hydraulics 90: 43-60.
Franses PH and Paap R, 2000. Periodic Time Series Models. New York: Oxford University Press.409 p.
Jones RH and Brelsford W, 1996. Time series with periodic structure. Biometrika (54): 403–408.
Khalili K, Fakheri Fard A, Dinpaghoh Y, Ahmadi F and Behmanesh J, 2013. Introducing and Application of Combined BL-ARCH Model for daily river flow forecasting (Case study: Shahar-Chai River). Journal of Water and Soil 27(2): 342-350.
L¨utkepohl H, 2005. New Introduction to Multiple Time Series Analysis. Berlin: Springer. 642 p.
Matalas NC and Wallis JR, 1971. Statistical properties of multivariate fractional noise processes. Water Resources Research 3(4): 1460-1468.
Matalas NC, 1967.  Mathematical assessment of synthetic hydrology. Water Resources Research 3(4):937-945.
Mejia JM, 1971. On the Generation of Multivariate Sequences Exhibiting the Hurst Phenomenon and Some State University, Fort Colins, Colorado.
Mendenhall W and Reinmuth J, 1982. Statistics for Management and Economics. Fourth Edition, North Scituate (Mass.) : Duxbury Press.
Nazeri Tahroudi M and Khalili K, 2013. Introduction of advanced moments method (SAM) to estimate the return period of river drought volume (Case Study: Basins of Urmia Lake). The first national conference on the impact of Urmia Sea boar on the soil and water resources. Oct. 30, Agricultural and Natural Resources Research Center of East Azerbaijan.
Nazeri Tahrudi M, Khalili K, Abbaszade Afshar M and Nazeri Tahrudi Z, 2014. Compared to the normal mechanism becomes the normal monthly rainfall data from different regions of Iran. Journal of Water and Soil 28(2): 365-372.
Nazeri Tahrudi M, Khalili K, Ahmadi F and Nazeri Tahrudi Z, 2012. Temperature modeling using ARMA periodic time series (Case study: Kerman synoptic station). The First National Conference on Sustainable Development Strategies in Agricultural, Natural Resources and Environment. 21st March, Iran Natural Disaster Research Institute, Tehran.
O'Connel PE, 1974. Stochastic modeling of long-term persistence in stream flow sequences. Ph.D, Thesis. Imperial College, University of London.
Pagano M, 1978. On periodic and multiple autoregressions. The Annals of Statistics 6: 1310–1317.
Salas JD, Delleur JW, Yevjevich V and Lane WL, 1980. Applied Modeling of Hydrologic Ttime Series. Water Resource Publications, P. O. Box 2841. Littleton, Colorado 80161 U.S.A 484 P.  
Tesfaye YG, Meerschaert MM and Anderson PL, 2006. Identification of periodic autoregressive moving average models and their application to the modeling of river flows. Water Resources Research 42(1): 216-233.
Troutman BM, 1979. Some results in periodic autoregression. Biometrika 66: 219–228.
Ula AT, 1990. Periodic covariance stationarity of multivariate periodic autoregressive moving average processes. Water Resources Research 26: 855-861.
Ula AT, 1993. Forecasting of multivariate periodic autoregressive moving-average processes. Journal of Time Series Analysis 14: 645-657.
Ursu E and Duchesne P, 2009. On modeling and diagnostic checking of vector periodic autoregressive time series models. Journal of Time Series Analysis 30(1): 70–96.
Valencia D and Schaake JC, 1973. Disaggregation processes in stochastic hydrology. Water Resources Research 9(3): 580-585.
Wilcoxon F, 1945. Individual comparison by ranking methods. Biometrics 1(6): 80–83.
Young GD and Pisano WC, 1968. Operational hydrology using residuals. Journal of the Hydraulics 94: 909-924.