پایش مکانی و زمانی خشکسالی کشاورزی با استفاده از تصاویر سنجنده مودیس و فن‌آوری سنجش از دور (مطالعه موردی: استان آذربایجان شرقی)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 1- دانشجوی دکتری مهندسی آبیاری و زهکشی، گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 دانشجوی دکتری مهندسی آبیاری و زهکشی، گروه مهندسی آب، دانشگاه ارومیه

3 دانشیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

خشکسالی از جمله پیامدهای تکرار شونده اقلیمی است که در بیشتر نقاط جهان رخ می­دهد و موجب کم­آبی، خسارات اقتصادی و پیامدهای ناگوار اجتماعی می­شود. روش­های متداول ارزیابی و پایش خشکسالی اغلب وابسته به داده­های هواشناسی به­ویژه بارش می­باشند با توجه به دقت مکانی پایین و در مواردی ناقص و نادرست بودن این اطلاعات، نمایه‎های خشکسالی هواشناسی که از روی این داده­ها محاسبه می­شوند، در پایش خشکسالی مفید نخواهند بود. فن‎آوری­های سنجش از دور با پوشش مکانی و زمانی مناسب منطقه مطالعاتی، ابزار مناسبی در پایش خشکسالی کشاورزی به‎شمار می­روند. در این پژوهش با استفاده از تصاویر ماهواره­ای سنجنده مودیس در دوره زمانی 12 ساله (1382 تا 1393) اقدام به استخراج و ارزیابی پراکندگی زمانی و مکانی نمایه­های خشکسالی کشاورزی (DSI، VCI و TCI) در استان آذربایجان شرقی شد. هم­چنین همبستگی بین نمایه­های خشکسالی کشاورزی به­دست آمده از سنجش از دور با نمایه خشکسالی هواشناسی SPI بررسی شد. یافته­های این پژوهش نشان داد که نمایه­های سنجش از دور از دقت خوبی در برآورد پراکندگی مکانی و زمانی خشکسالی کشاورزی برخوردارند، به­طوری­که ضریب همبستگی بین نمایه DSI و SPI برابر با 64/0 بدست آمد. بررسی نمایه­ SPI و نمایه­های خشکسالی کشاورزی نشان داد که در سال 1387 در بیشتر ایستگاه­های استان خشکسالی متوسط رخ داده است. با این‎حال مناطق شمالی استان در حاشیه رود ارس حتی در سال خشک (سال 1387) نیز نسبت به دیگر مناطق از وضعیت پوشش گیاهی بهتری برخوردار بودند، که مقدار نمایه SPI برابر با 38/0- و 53/0- به­ترتیب برای ایستگاه­های جلفا و کلیبر نیز حاکی از این مطلب است. مقایسه آماری نتایج نشان داد که بالاترین ضریب همبستگی بین نمایه­های خشکسالی کشاورزی و هواشناسی در ایستگاه جلفا است، که بالاترین مقدار میانگین نمایه SPI، 6/0، را در استان داشت.  

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatial and Temporal Monitoring of Agricultural Drought Using MODIS Sensor Images and Remote Sensing Techniques (A Case Study: East Azerbaijan Province)

نویسندگان [English]

  • A Rostami 1
  • M Bazzane 2
  • M Raeini 3
چکیده [English]

Drought is one of the recurring meteorological events that occurs in whole of the world and leads to water scarcity, economical hazards and devastating social consequences. Traditional methods of drought monitoring often depends on meteorological data especially on precipitation data. Due to the low spatial resolution and some missing values of ground based data, estimation of meteorological drought indices from these data is not reliable. Remote Sensing techniques with fine spatial and temporal resolutions are considered as useful tools for agricultural drought monitoring. In this study, spatial and temporal distribution of agricultural indices (DSI, VCI, TCI) were evaluated in the East Azerbaijan Province during the years of 1382 to 1393 (Iranian calendar), using the satellite images of MODIS. Also correlation between agricultural drought indices based on remote sensing data and meteorological drought index (SPI) was investigated. Results showed that the remote sensing indices had a good accuracy in the monitoring of agricultural drought, for instance the correlation coefficient between DSI and SPI indices was 0.64. Evaluation of SPI and agricultural drought indices indicated that moderate drought occurred in the most stations in 1387. However, the northern areas (Aras riverside) had a better vegetation condition in comparison to other regions even at dry year of 1387 and SPI index values were equal to -0.38 and -0.53 for Jolfa and Kaleybar stations respectively, that confirmed this matter. Statistical analysis showed that the highest correlation between agricultural and meteorological indices was in Jolfa station, where the highest mean amount of SPI index was 0.6. 

کلیدواژه‌ها [English]

  • Drought
  • MODIS
  • remote sensing
  • SPI
جلیلی ش، 1384. مقایسه شاخص­های ماهواره­ای و هواشناسی در پایش خشکسالی­ها (مطالعه موردی: استان تهران). پایان نامه کارشناسی ارشد سنجش از دور و  GIS. دانشگاه تربیت مدرس، تهران.
رضایی ع، نظرلو ع و فریدپور م، ۱۳۹۲. برآورد خشکسالی کشاورزی با تاکید بر تصاویر ماهواره ای و شاخص سلامت پوشش گیاهی (منطقه مورد مطالعه: آذربایجان شرقی و غربی). همایش ملی پدافند غیر عامل در بخش کشاورزی، جزیره قشم، ایران.
رضایی بنفشه م، رضایی ع و فریدپور م، 1394. تحلیل خشکسالی کشاورزی استان آذربایجان‌شرقی با تاکید بر سنجش از دور و شاخص وضعیت پوشش گیاهی. دانش آب و خاک، جلد 25، شماره 1، صفحه‎های 113 تا 123.
عیوضی م، مساعدی ا و دهقانی ا، 1388.  مقایسه روش­های مختلف پیش بینی شاخص خشکسالیSPI . پژوهش­های حفاظت آب و خاک، جلد 16، شماره 2، صفحه‎های 145 تا 167.
لشنی زند م،  1383. بررسی اقلیمی خشکسالی­های ایران و راهکارهای مقابله با آن. رساله دکتری جغرافیای طبیعی. دانشگاه اصفهان، اصفهان.
موذن زاده ر، ارشد ص، قهرمان ب و داوری ک، 1391. پایش خشکسالی در کشت­های غیر آبی با استفاده از سنجش از دور. مدیریت آب و آبیاری، جلد 2، شماره 2، صفحه‎های 39 تا 52.
میرموسوی ح و کریمی  ح، 1392. مطالعه اثر خشکسالی بر روی گیاه با استفاده از مودیس. جغرافیا و توسعه، جلد 31، صفحه‎های 57 تا 76.
Caccamo J, Chisholm LA, Bradstock RA and Puotinen ML, 2011. Assessing the sensitivity of MODIS to monitor drought in high biomass ecosystems. Remote Sensing Environment 115: 2626-2639.
Jensen JR, 1996. Introductory Digital Image Processing: A Remote Sensing Perspective. Upper Saddle River, New Jersey: Prentice Hall.
Johnson GE, Achutuni VR, Thiruvengadachari S and Kogan FN, 1993. The role of NOAA satellite data in drought early warning and monitoring: Selected case studies. Pp. 31-48. In: Wilhite DA (ed). Drought Assessment, Management, and Planning: Theory and Case Studies. Chapter 3. Kluwer Academic Publishers.
Keshavarz MR, Vazifehdoust M and Alizadeh A, 2014. Drought monitoring using a Soil Wetness Deficit Index (SWDI) derived from MODIS satellite data. Agricultural Water Management 132: 37-45.
Kogan FN, 1995. Droughts of the late 1980s in the United States as derived from NOAA polar orbiting satellite data. Weather in the United States. Bulletin of American Meteorological Society 76: 655–668.
Lessel J, Sweeney A and Ceccato P, 2016. An agricultural drought severity index using quasi-climatological anomalies of remotely sensed data. International Journal of Remote Sensing 37 (4): 913- 925.
McKee TB, Doesken NJ and Kleist J, 1993. The relationship of drought frequency and duration to time scale. In: Proceedings of the Eighth Conference on Applied Climatology, Anaheim, California 17–22 January 1993. Boston, American Meteorological Society 179–184.
McVicar TR, Van Niel TG, Li LT, Hutchinson MF, Mu XM and Liu ZH, 2007. Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. Journal of Hydrology 338: 196-220.
Nichol JE and Abbas S, 2015. Integration of remote sensing datasets for local scale assessment and prediction of drought. Science of the Total Environment 505: 503- 507. 
Peters E, 2003. Propagation of drought through groundwater systems-illustrated in the Pang (UK) and Upper-Guadiana (ES) catchments. Ph.D. Thesis, Wageningen University, the Netherlands.
Shahabfar A, Ghulam A and Eitzinger J, 2012 .Drought monitoring in Iran using the perpendicular drought indices. International Journal of Applied Earth Observation and Geoinformation 18: 119-127.
Tate EL and Gustard A, 2000. Drought definition: a hydrological perspective. Pp. 23-48. In: Vogt JV and Somma F (eds). Drought and Drought Mitigation in Europe. Kluwer Academic Publishers.
Thenkabail PS, Gamage MSDN, Smakhtin VU, 2004. The use of remote sensing data for drought assessment and monitoring in Southwest Asia. Research Report 85 Colombo, Sri Lanka: International Water Management Institute.
Zhang A and Jia G, 2013. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sensing of Environment 134: 12- 23.