نقش جزء رس در نگهداشت کربن آلی محلول در خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 1. دانشجوی دکتری گروه علوم و مهندسی خاک، دانشگاه تهران

2 دانش آموخته کارشناسی ارشد گروه علوم و مهندسی خاک، دانشگاه تهران

چکیده

سه نوع خاک، متفاوت از نظر کانی رس غالب (اسمکتایت، ایلایت و آلوفان) و یک نمونه­ی کائولن از نظر نگهداشت کربن آلی محلول عصاره گیری شده از ورمی کمپوست مقایسه شدند. نمونه­ها با محلول حاوی کربن آلی با غلظت 200 میلی‌گرم در لیتر در تعادل گذاشته شدند. میزان کربن آلی محلول جذب شده از تفاوت میان میزان کربن آلی اولیه و نهایی نمونه­ها به دست آمد. ظرفیت جذب نمونه­ها به طور معنی داری متفاوت بود (p<0.01)، به ترتیب 47، 40، 18 و 7 میلی­گرم کربن آلی محلول بر گرم رس­های اسمکتایت،آلوفان، ایلایت و کائولن. نمونه­ی اسمکتایت به عنوان نمونه­ی برتر در جذب کربن آلی محلول شناسایی شد که این امر نشان می­دهد رس­های لایه لایه احتمالا ظرفیت نگهداری کربن آلی محلول بیشتری را دارا هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Role of Clay Fraction in Retention of Dissolved Organic Carbon in soil

نویسندگان [English]

  • A Fathi Gerdelidani 1
  • B Rahimzadeh 2
1
2
چکیده [English]

Three types of soil, differing in their dominant clay mineral (smectite, illite and allophone) and a kaolin samples were compared for retention of dissolved organic carbon (DOC) extracted from vermicompost. The samples were equilibrated with DOC solution (carbon content 200 mg.l-1). The amount of retained DOC was calculated from the difference between the initial and final OC contents. The retention capacity was significantly different among the samples (p<0.01), being 47, 40, 18, 7 mg adsorbed dissolved organic carbon/g clay respectively for smectite, allophane, illite and kaolin samples. The Smectite sample was recognized as superior one in dissolved organic carbon retention, suggesting that the layered clay minerals possibly had more capacity for DOC retention.

کلیدواژه‌ها [English]

  • allophane
  • dissolved organic carbon
  • illite
  • kaolin
  • smectite
بهشتی فر س و شریعتی م، 1394. اثر تیتانیوم بر رشد و تولید رنگیزه­های فتوسنتزی جلبک تک سلولی Dunaliella salina. نشریه پژوهش­های گیاهی (مجله زیست شناسی ایران)، جلد 28، شماره 1، صفحه 42 تا 52.
Aimin LI, Minjuan XU, Wenhui LI, Xuejun WANG, and Jingyu DAI, 2008. Adsorption characterizations of fulvic acid fractions onto kaolinite. Journal of Environmental Sciences 20: 528-535.
Bache BW, 1984. The role of calcium in buffering soils. Plant, Cell & Environment 7: 391-395.
Basile‐Doelsch I, Amundson R, Stone WEE, Masiello CA, Bottero JY, Colin F, and Meunier JD, 2005. Mineralogical control of organic carbon dynamics in a volcanic ash soil on La Réunion. European Journal of Soil Science 56: 689-703.
Bremmer JM and Mulvancey CS, 1982. Total nitrogen. In: Page AL, Miller RH and Keeney DR, (eds.). Method of Soil Analysis. Part II. Aragon Monogr, 9, Soil Science Society of America and American Society of Agronomy, Madison, WI, USA. Pp: 599-622.
Broadbent F E, and Bradford G R, 1952. Cation-exchange groupings in the soil organic fraction. Soil Science 74: 447-458.
Brown A, McKnight DM, Chin YP, Roberts EC, and Uhle M, 2004. Chemical characterization of dissolved organic material in Pony Lake, a saline coastal pond in Antarctica. Marine Chemistry 89: 327-337.
Buurman P, Peterse F, and Almendros Martin G, 2007. Soil organic matter chemistry in allophanic soils: a pyrolysis‐GC/MS study of a Costa Rican Andosol catena. European Journal of Soil Science 58: 1330-1347.
Chapman H D, 1965. Cation exchange capacity. In Black C A, Evans D D, White L J, Ensminger L E, and Clark F E, (eds.). Methods of Soil Analysis. American Society of Agronomy, Madison, WI, pp: 891–901.
Cornejo J, and Hermosin MC, 1996. Interaction of humic substances and soil clays. PICCOLO, A. Humic substances in terrestrial ecosystems. Amsterdam: Elsevier.
Denef K, and Six J, 2005. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization. European Journal of Soil Science 56: 469-479.
Dittmar T, and Kattner G, 2003. Recalcitrant dissolved organic matter in the ocean: major contribution of small amphiphilics. Marine chemistry 82: 115-123.
Doulia D, Leodopoulos C, Gimouhopoulos K, and Rigas F, 2009. Adsorption of humic acid on acid-activated Greek bentonite. Journal of Colloid and Interface Science 340: 131-141.
 Dungait JA, Ghee C, Rowan JS, McKenzie BM, Hawes C, Dixon ER, and Hopkins DW, 2013. Microbial responses to the erosional redistribution of soil organic carbon in arable fields. Soil Biology and Biochemistry 60: 195-201.
Gee G W, and Bauder J W, 1986. Particle- size analysis. In Klute A, (ed.). Methods of Soil Analysis. Part1. Physical and Mineralogical Methods. Soil Science Society of America and American Society of Agronomy, Madison, WI, USA, pp: 383-411.
Ghommem M, Hajj MR, and Puri IK, 2012. Influence of natural and anthropogenic carbon dioxide sequestration on global warming. Ecological Modelling 235: 1-7.
Greenland DJ, 1965. Interaction between clays and organic compounds in soils. Soils and Fertilizers 28: 412-425.
Hesse PR. 1971. A text book of soil chemical analysis. John Murray, London.
Holmgren G G S, 1967. A rapid citrate – dithionite extractable iron proceder. Soil Science Society of America 31: 210 – 211.
Jagadamma S, Mayes MA, Zinn YL, Gísladóttir G, and Russell AE, 2014. Sorption of organic carbon compounds to the fine fraction of surface and subsurface soils. Geoderma 213: 79-86.
Ji P, Momol M T, Olson S M, Pradhanang P M, and Jones J B, 2005. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Disease 89: 497-500.
Kahle M, Kleber M, and Jahn R, 2004. Retention of dissolved organic matter by phyllosilicate and soil clay fractions in relation to mineral properties. Organic Geochemistry 35: 269-276.
Khormali F, and Abtahi A, 2003. Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran. Clay minerals 38: 511-527.
Mavi MS, Sanderman J, Chittleborough DJ, Cox JW, and Marschner P, 2012. Sorption of dissolved organic matter in salt-affected soils: Effect of salinity, sodicity and texture. Science of the Total Environment 435: 337-344.
Nelson D W, and Sommers L E, 1982. Total carbon, organic carbon, and organic matter. In:Page A L, (Ed.). Methods of Soil Analysis. Part 2. 2nd Edition Agronomy. Monographs. 9. Soil Science Society of America and American Society of Agronomy, Madison, WI, USA, pp: 539-579.
Oren A, and Chefetz B, 2012. Successive sorption–desorption cycles of dissolved organic matter in mineral soil matrices. Geoderma 189: 108-115.
Pettit RE, 2004. Organic matter, humus, humate, humic acid, fulvic acid and humin: Their importance in soil fertility and plant health. CTI Research.
Pizzeghello D, Zanella A, Carletti P, and Nardi S, 2006. Chemical and biological characterization of dissolved organic matter from silver fir and beech forest soils. Chemosphere 65: 190-200.
Preston MD, Eimers MC, and Watmough SA, 2011. Effect of moisture and temperature variation on DOC release from a peatland: conflicting results from laboratory, field and historical data analysis. Science of the total environment 409: 1235-1242.
Pronk GJ, Heister K, Ding GC, Smalla K, and Kögel-Knabner I, 2012. Development of biogeochemical interfaces in an artificial soil incubation experiment; aggregation and formation of organo-mineral associations.Geoderma 189: 585-594.
Rashad M, Dultz S, and Guggenberger G, 2010. Dissolved organic matter release and retention in an alkaline soil from the Nile River Delta in relation to surface charge and electrolyte type. Geoderma 158: 385-391.
Rice CW, 2002. Organic matter and nutrient dynamics. Encyclopedia of soil science 2: 1180-1183.
Saidy AR, Smernik RJ, Baldock JA, Kaiser K, and Sanderman J, 2013. The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide. Geoderma 209: 15-21.
Saidy AR, Smernik RJ, Baldock JA, Kaiser K, and Sanderman J, and Macdonald LM, 2012. Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma 173: 104-110.
Salman M, El-Eswed B, and Khalili F, 2007. Adsorption of humic acid on bentonite. Applied Clay Science 38(1): 51-56.
Schnitzer M, 1991. Soil organic matter-The next 75 years. Soil Science 151: 41-58.
Schnitzer M, and Khan SU (Eds.), 1975. Soil organic matter (Vol. 8). Elsevier.
Simard R R, 1993. Ammonium acetate-extractable elements. Soil sampling and methods of analysis, 39-42.  
Staff SS, (2014). Keys to Soil Taxonomy, United States Department of Agriculture. Natural Resources Conservation Service.
Stevenson FJ, 1994. Humus chemistry: genesis, composition, reactions. John Wiley & Sons.
Theng BKG, 1976. Interactions between montmorillonite and fulvic acid.Geoderma 15: 243-251.
Theng BKG, 1980. Soils with variable charge. New Zealand Society of Soil Science, Soil Bureau, Department of Scientific and Industrial Research, Private Bag. Lower Hutt.
Van Zomeren A, and Comans RN, 2007. Measurement of humic and fulvic acid concentrations and dissolution properties by a rapid batch procedure.Environmental science and technology 41: 6755-6761.
Walkley A, and Black IA, 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science 37: 29-38.
Wang M, Liao L, Zhang X, and Li Z, 2012. Adsorption of low concentration humic acid from water by palygorskite. Applied Clay Science 67: 164-168.
Zhang G, Wu T, Li Y, Huang X, Wang Y, Wang G, 2012. Sorption of humic acid to organo layered double hydroxides in aqueous solution. Chemical engineering journal 191: 306-313.
Zhou M, and Li Y, 2001. Phosphorus-sorption characteristics of calcareous soils and limestone from the southern Everglades and adjacent farmlands. Soil Science Society of America Journal 65: 1404-1412.