تحلیل جریان در عرض رودخانه به‌روش اجزاء محدود

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار گروه مهندسی آب، دانشکده مهندسی آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

رودخانه­های آبرفتی غالباً دارای دشت­های سیلابی عریضی می­باشند که در انتقال سیل، بهبود شرایط زیست­گاه رودخانه، حاصل­خیزی اراضی ساحلی و نیز رونق فعالیت­های کشاورزی و تفریحی نقش مهمی دارند. برای محاسبه دبی جریان سیل در مجرای اصلی و دشت­های سیلابی و نیز شناسایی نقاط فرسایش­پذیر رودخانه، تعیین توزیع عرضی سرعت جریان و تنش برشی مرزی دارای اهمیت زیادی است. این­در­حالی است که در شرایط سیل، اندازه­گیری پروفیل عرضی سرعت جریان و به­ویژه تنش برشی نیازمند تجهیزات پیشرفته و گران­قیمت است. بنابراین، استفاده از مدل­های ریاضی شبه­دوبعدی مبتنی بر حل معادلات پیوستگی و اندازه حرکت جریان به­عنوان راه­کاری مناسب در طرح­های مهندسی رودخانه جایگاه ارزشمندی پیدا نموده است. در این مقاله با حل عددی مدل ریاضی شبه­دوبعدی شیونو و نایت به­کمک روش اجزاء محدود، ابتدا توزیع عرضی سرعت در رودخانه میناب (ایستگاه برنطین) با استفاده از داده­های صحرایی واسنجی شد. بیشینه خطای مدل در برآورد دبی جریان سیلاب حدود 13 درصد به­دست آمد. سپس توزیع عرضی تنش برشی برای سیلاب سال 1374 شبیه­سازی شده و به­کمک آن تغییرات هندسه مقطع عرضی رودخانه تحلیل شد. نتایج این تحقیق نشان داد که وضعیت فرسایش و رسوب­گذاری در عرض رودخانه بر اساس تنش­های برشی به­دست آمده از مدل ریاضی به واقعیت بسیار نزدیک می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of Flow in River Cross Section Using Finite Elements Method

نویسنده [English]

  • A Zahiri
چکیده [English]

Alluvial rivers often have wide floodplains which play an important role in flood passage, enhancement of environmental habitat, soil fertility and extending recreational and agricultural activities. For calculation of flood discharges in main channel and floodplains and recognition of erodible sections of the river, simulation of lateral velocity and bed shear stress distribution are important. In the flooding situation, however, advanced and expensive pieces of equipment are required to measure lateral profile of velocity and specially bed shear stress. Therefore, application of quasi 2-D mathematical models based on solutions of continuity and momentum equations is important in river engineering projects. In this paper, at first, by application of Shiono and Knight model numerical solution and use of finite element method, lateral distribution of flow velocity in Minab river (at Berentin station) was calibrated based on field data. The maximum error was around 13 percent for flood discharge computation. Then, lateral distribution of bed shear stress for a flood event in the year 1374 (Iranian calendar) was simulated, based on which lateral variations of river cross section were analyzed. Results of this research showed that erosion and sedimentation situation in river width computed by mathematical model based on bed shear stress presented good agreement with the actual data.

کلیدواژه‌ها [English]

  • finite element method
  • Lateral distribution of boundary shear stress
  • Lateral velocity distribution
  • Minab river
  • Quasi 2-D model
احمری ح، 1375. بررسی اثر برداشت مصالح بر شکل بستر و رژیم رودخانه. پایان­نامه کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه صنعتی شریف.
بدیعی م، 1378. تحلیل تئوری و مسائل روش اجزاء محدود. انتشارات انگیزه.
ظهیری ع، ایوب­زاده س­ع و دهانزاده ب، 1388. حل توزیع عرضی سرعت جریان در رودخانه­ها (مطالعه موردی: ایستگاه هیدرومتری ملاثانی-رودخانه کارون). مجله علوم کشاورزی و منابع طبیعی گرگان، جلد 16، ویژه­نامه2، صفحه­های 273 تا 283.
ظهیری ع، عبدالمجیدی ح، قربانی کوهی­خیلی س و دهقانی اا، 1391. شبیه­سازی پروفیل عرضی سرعت جریان در رودخانه­ها به­روش اجزاء محدود. مجله پژوهش­های حفاظت آب و خاک، جلد 19، شماره 2، صفحه­های 63 تا 79.
هوشمندی ف، ظهیری ع، دهقانی اا و مفتاح م، 1393. مقایسه روش­های برآورد توزیع تنش برشی در عرض مجاری روباز. مجله پژوهش­های حفاظت آب و خاک، جلد 21، شماره 5، صفحه­های 285 تا 295.
Abril JB, 2002. Overbank flood routing analysis applying jointly variable parameter diffusion and depth-averaged flow finite element models. Pp. 161-167, Proceedings of the International Conference on Fluvial Hydraulics, Belgium.
Ackers P, 1993. Stage-Discharge functions for two-stage channels. Water and Environmental Management 7: 52-61.
Baird JI and Ervine DL, 1984. Resistance to flow in channels with overbank floodplain flow. Pp 137-150, Proceeding of the 1st Int. Conference on Channels and Channel Control Structures, Southampton, U.K.
Bousmar D and Zech Y, 1999. Momentum transfer for practical flow computation in compound channels. Journal of Hydraulic Engineering ASCE 125(7): 696-706.
 
Cristodoulou RM, 1992. Apparent shear stress in smooth compound channels. Water Resources Management 6: 235-247.
Da Silva AM, 2006. On why and how do rivers meander? Journal of Hydraulic Research 44(5): 579–590.
Ervine DA, Babaeyan-Koopaei K and Sellin RHJ, 2000. Two-dimensional solution for straight and meandering overbank flows. Journal of Hydraulic Engineering ASCE 126(9): 653-669.
Ervine DL and Baird JI, 1982. Rating Curves for rivers with Overbank Flow. Proceedings of the Institution of Civil Engineers 73(2): 465-472.
Hopkinson LC and Wynn-Thompson TM, 2016. Comparison of direct and indirect boundary shear stress measurements along vegetated streambanks. River Research and Applications 32(8):1755-1764.
Hu C, Ji Z and Guo Q, 2010. Flow movement and sediment transport in compound channels. Journal of Hydraulic Research 48(1): 23-32.
Jesson M, Sterling M and Bridgeman J, 2013. Modeling flow in an open channel with heterogeneous bed roughness. Journal of Hydraulic Engineering ASCE 139(2): 195-204.
Karamisheva R, Lyness J, Myers WRC and Cassells JBC, 2005. Improving sediment discharge prediction for overbank flows. Proceedings of the Institution of Civil Engineers 158(1): 17-24.
Katua KK and Patra K, 2007. Boundary shear stress distribution in meandering compound channel flow. Proceedings of the 5th Australian Stream Management Conference. Australian rivers: making a difference. Charles Sturt University, Thurgoona, New South Wales.
Knight DW and Abril JB, 1996. Refined calibration of a depth-averaged model for turbulent flow in a compound channel. Journal of Institution of Water and Environment Management 118: 151-159.
Knight DW, Shiono K and Pirt J, 1989. Prediction of depth mean velocity and discharge in natural rivers with overbank flow. International Conference on Hydraulic and Environmental Modeling of Coastal, Estuarine and River Waters. Bradford, England, 419-428.
Knight DW and Hamed ME, 1984. Boundary shear in symmetrical compound channels. Journal of Hydraulic Engineering ASCE 110(10): 1412-1430.
Kordi H, Amini R, Zahiri A and Kordi E, 2015. Improved shiono and knight method for overflow modeling. Journal of Hydrologic Engineering ASCE 20(12).
Kyong-Soap S, 2010. Methodology for calculating shear stress in a meandering channel. MSc thesis, Department of Civil and Environmental Engineering, Colorado State University.
Martin-Vide JP and Moreta PJM, 2008. Formulae for apparent shear stress in straight compound channels with smooth floodplains. International Conference on Fluvial Hydraulics (River Flow), Turkey.
Omran M and Knight DW, 2006. Modelling the distribution of boundary shear stress in open channel flows. In: R. Ferreira, J. Leal, A. Cardoso, E. Alves eds., River Flow, Lisbon, Portugal, Vol. 1, Taylor & Francis, London, UK, 397–404.
Prinos P and Townsend RD, 1984. Comparison of methods for predicting discharge in compound open channels. Advances in Water Resources 7: 180-187.
Sharifi S 2009. Application of evolutionary computation to open channel flow modelling. PhD Thesis, University of Birmingham, UK.
Shiono K and Knight DW, 1988. Two dimensional analytical solution for a compound channel. 3rd International Symposium on Refined Flow Modeling and Turbulence Measurements, Japan.
Shiono K and Knight DW, 1991. Turbulent open-channel flows with variable depth across the channel. Journal of Fluid Mechanics 222: 617-646.
Smart GM, 1992. Stage-discharge discontinuity in composite flood channels. Journal of Hydraulic Research 30(6): 817-833.
Wormleaton PR and Merrett DJ, 1990. An improved method of the calculation for steady uniform flow in prismatic main channel/flood plain sections. Journal of Hydraulic Research 28(2): 157-174.
Wormleaton PR, Allen J and Hadjipanos P, 1982. Discharge assessment in compound channel flow. Journal of Hydraulic Division 108(9): 975-994.