اثر متقابل کادمیم و روی بر رشد و ترکیب شیمیایی کلزا (Brassica napus cv. Hyola) در یک خاک شن لومی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق دکتری علوم خاک، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز

2 دانشیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز

3 استاد گروه به‌نژادی و بیوتکنولوژی گیاهی، دانشکده کشاورزی، دانشگاه تبریز

4 عضو هیئت علمی مرکز تحقیقات کشاورزی استان آذربایجان شرقی

چکیده

برای بررسی اثر متقابل کادمیم و روی بر رشد و ترکیب شیمیایی کلزا،  آزمایش گلخانه‌ای به‌صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی با دو فاکتور کادمیم در هشت سطح (صفر، 5/0، 5/2، 5، 10، 20، 40 و mg kg-180) و روی در هشت سطح (صفر، 5، 25، 50، 100، 200، 400 و mg kg-1800)، با سه تکرار در یک خاک شن لومی اجرا شد. بعد از 60 روز، وزن خشک بخش‌هوایی و ریشه و غلظت‌های کادمیم، روی، آهن، منگنز و مس در این دو بخش اندازه‌گیری شدند. نتایج نشان داد که در سطوح 5/0 و mg Cd kg-1 5/2، کلیه سطوح روی باعث افزایش وزن خشک بخش‌هوایی و ریشه گردیدند، ولی در سطوح بالاتر کادمیم، کاربرد 5 و mg Zn kg-1 25 باعث افزایش این صفات شده و کاربرد سطوح بالاتر روی، کاهش وزن خشک بخش‌هوایی و ریشه را به دنبال داشت. همچنین، در سطوح تا mg Cd kg-1 5، حتی کاربردmg Zn kg-1 50 کاهش غلظت کادمیم بخش‌هوایی را در مقایسه با شاهد سبب شد، در حالی که در سطوح بالاتر کادمیم، این کاهش فقط با کاربردmg Zn kg-1 5 حاصل گردید. افزایش سطح کادمیم در هر سطح کاربرد روی باعث کاهش غلظت روی بخش‌هوایی گردید. مصرف روی در هر سطح کادمیم، ابتدا باعث افزایش و سپس باعث کاهش غلظت آهن بخش‌هوایی و ریشه شد. کاربرد روی در هر سطح کادمیم باعث افزایش غلظت منگنز بخش‌هوایی و کاهش غلظت منگنز ریشه گردید. همچنین، کاربرد روی در هر سطح کادمیم سبب کاهش غلظت مس در هر دو بخش‌هوایی و ریشه شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Interaction Effects of Zinc and Cadmium on Growth and Chemical Composition of Canola (Brassica napus cv. Hyola) in a Loamy Sand Soil

نویسندگان [English]

  • S Sadeghi 1
  • SH Oustan 2
  • N Najafi 2
  • M Valizadeh 3
  • H Monirifar 4
چکیده [English]

To investigate the interaction effect of Cd and Zn on growth and chemical composition of canola, a factorial greenhouse experiment in a randomized complete block design with two factors including Cd at eight levels (0, 5.0, 5.2, 5, 10, 20, 40 and 80 mg kg-1 soil) and Zn at eight levels (0, 5, 25, 50, 100, 200, 400 and 800 mg kg-1 soil) with three replications was conducted in a loamy sand soil. After 60 days, the dry weights and concentrations of Cd, Zn, Fe, Mn and Cu in shoots and roots were determined. At levels of 2.5 and 0.5 mg Cd per kg of soil, all levels of Zn increased shoot and root dry weights. At higher levels of Cd, applications of 5 and 25 mg Zn per kg of soil increased the shoot and root dry weights, but at higher levels of Zn, a decrease in these parts was observed. Moreover, at levels up to 5 mg Cd kg-1, application of Zn even at level of 25 mg Zn kg-1decreased Cd concentration in shoots in comparison with control. However, at higher levels of Cd, this decrease was achieved only at 5 mg Zn kg-1. Increasing the level of Cd at any level of Zn decreased the Zn concentration in shoots. Application of Zn at each level of Cd, first increased and then decreased the concentration of iron in shoots and roots. Zn supplementation at each level of Cd increased concentration of Mn in shoots and decreased its concentration in roots. In addition, Zn application at each level of Cd decreased the concentration of Cu in both shoots and roots.

کلیدواژه‌ها [English]

  • Cadmium
  • Canola
  • Interaction effect
  • Shoot and root dry weights
  • Zinc
رحیمی ط و رونقی ع، 1391. اثر کاربر منابع مختلف روی بر غلظت کادمیم و برخی عناصر کم مصرف در گیاه اسفناج در یک خاک آهکی. علوم و فنون کشت‌های گلخانه‌ای، جلد 3، شماره 10، صفحه‌های 101 تا 111.
رونقی ع‌ا‌م و مفتون م، 1385. هیدروپونیک: راهنمای عملی برای پرورش‌دهندگان کشت بدون خاک (ترجمه). انتشارات دانشگاه شیراز. شیراز.
ولیزاده فرد ف، ریحانی تبار ع، نجفی ن و اوستان ش، 1391الف. اثر مصرف توأم کادمیوم و روی در یک خاک آهکی بر جذب عناصر فسفر، مس، آهن و منگنز توسط دو رقم برنج در شرایط غرقاب و غیرغرقاب. مجله تحقیقات آب و خاک ایران، جلد 1، شماره 43، صفحه‌های 207 تا 219.
ولیزاده فرد ف، ریحانی تبار ع، نجفی ن اوستان ش، 1391ب. تأثیر مصرف توأم کادمیوم و روی بر ویژگی‌های رشد گیاه برنج و غلظت روی، کادمیوم، آهن و منگنز خاک در دو شرایط رطوبتی غرقاب و غیرغرقاب. مجله تحقیقات آب و خاک ایران، جلد 3، شماره 43، صفحه‌های 195 تا 205.
Adiloglu A, Adiloglu S, Gonulsuz E and Oner N, 2005. Effect of Zn application on Cd uptake of maize grown in Zn deficient soil. Pakistan J Bio Sci 8(1): 10-12.
Alcantara E, Romera FJ, Canete M and De la Guardia MD, 1994. Effects of heavy metals on both induction and function of root Fe (III) reductase in Fe-deficient cucumber Cucumis sativus L. Plants. J Exp Bot 45: 1893-1898.
Allison LE and Moodie CD, 1965. Carbonate. Pp. 1379-1396. In: Black CA (eds.).  Methods of Soil analysis. Part 2, Chemical and microbiological properties. ASA and SSSA, Madison, WI.
Alloway BJ, 1995. Heavy Metals in Soils. 2nd ed. Blackie Academic & Professional Publishers, London.
Alloway BJ, 2008. Zn in Soils and Crop Nutrition. 2nd ed. Published by IZA and IFA, France.
Aravind P and Prasad MNV, 2003. Zn alleviates Cd-induced oxidative stress in Ceratophyllum demersum L.: A free floating freshwater macrophyte. Plant Physiol Biochem 41: 391–397.
Boisson J, Ruttens A, Mench M and Vangronsveld J, 1999. Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils. Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation. Environ Pollut 104(2): 225-233.
Bower CA, 1952. Exchangeable cation analysis of saline and alkali soils. Soil Sci 73: 251-261.
Burton KW, King JB and Morgan E, 1986. Chlorophyll as an indicator of the upper critical tissue concentration of Cd in plants. Water Air Soil Poll 27: 147-154.
Cakmak I, Welch RM, Erenoglu B, Römheld V, Norvell WA and Kochian LV, 2000. Influence of varied Zn Supply on re-translocation of Cd (109Cd) and rubidium (86Rb) applied on mature leaf of durum wheat seedlings. Plant Soil 219: 279-284.
Cataldo DA and Wildung RE, 1978. Soil and plant factors influencing the accumulation of heavy metals by plants. Environ Health Perspect 27: 149-159.
Cherif J, Mediouni C, Ammar WB and Jemal F, 2011. Interactions of Zn and Cd toxicity in their effects on growth and in antioxidative systems in tomato plants (Solsnum lycopresicum). J Environ Sci 23(5): 837-844.
Chizzola R, 2001. Micronutrient composition of Papaver somniferum L. grown under low Cd stress conditions. J Plant Nutr 24(11): 1663–1677.
Ciecko Z, Kalembasa S, Wyszkowski M and Rolka E, 2004. Effect of soil contamination by Cd on potassium uptake by plants. Polish J Environ Studies 13(3): 333-337.
Das P, Samantaray S and Rout GR, 1997. Studies on Cd toxicity in crops: A review. Environ Pollut 98(1): 29-36.
Davis RD and Beckett PHT, 1978. Upper critical levels of toxic elements in plant. II. Critical levels of copper in young barley, wheat, rape, lettuce and ryegrass, and of nickel and Zn in young barley and ryegrass. New phytol 80: 23-32.
Dong J, Wu F and Zhang G, 2006. Influence of Cd on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64(10): 1659-1666.
Erdam H, Tosun YK and Ozturk M, 2012. Effect of Cd-Zn interactions on growth and Cd-Zn concentration in durum and bread wheats. Fresenius Environ Bulletin 21(5): 1046-1051.
Fontes RLF and Cox FR, 1998. Zn toxicity in soybean grown at high iron concentration in nutrient solution. J Plant Nutr 21(8): 1723–1730.
Gao X and Grant CA, 2012. Cd and Zn concentration in grain of durum wheat in relation to phosphorus fertilization, crop sequence and tillage management. App Environ Soil Sci 2012: 1-10.
Gee GW and Bauder JW, 1986. Particle-size analysis. Pp. 383-411. In: Klute A (eds). Methods of soil analysis. Part 1, Physical and mineralogical methods. ASA and SSSA, Madison, WI.
Gilmor JT and Kittrick JA, 1979. Solubility and equilibria of Zn in a flooded soil. Soil Sci Soc Am J 43(5): 890-892.
Goyer RA, 1997. Toxic and essential metal interactions. Annu Rev Nutr 17: 37–50.
Han SH, Kim DH and Lee JC, 2010. Cd and Zn interaction and phytoremediation potential of seven salix caprea clones. J Ecol Field Biol 33(3): 245-251.
Hart JJ, Welch RM, Norvell WA and Kochia LV, 2002. Transport interaction between Cd and Zn in roots of bread wheat and durum wheat seedlings. Physiol Plant 116(1): 73-78.
Imtiaz M, Alloway BJ, Shah KH, Siddiqui SH, Memon MY, Aslam M and Khan P, 2003. Zn nutrition of wheat: II: Interaction of Zn with other trace elements. Asian J Plant Sci 2(2): 156-160.
Jamali N, Ghaderian SM and Karimi N, 2014. Effects of Cd and Zn on growth and metal accumulation of Mathiola flavida boiss. Environ Eng Manag J 13(12): 2937-2944.
Jones BJ, 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press, LLC, USA.
Klute A, 1986. Water retention: laboratory methods. Pp. 635-660. In: Klute A (eds). Methods of Soil Analysis. Part 1, Physical and Mineralogical Methods. ASA and SSSA, Madison, WI.
Knudsen D, Peterson GA and Pratt PF, 1982. Lithium, sodium, and potassium. Pp. 225-246. In: Page AL (eds). Method of Soil Analysis. Part 2, Chemical and microbiological properties. ASA and SSSA, Madison, WI.
Koleli N, Eker S and Cakmak I, 2004. Effect of Zn fertilization on Cd toxicity in durum and bread wheat in Zn deficient soil. Environ Pollut 131(3): 453-459.
Kerkeb L and Kramer U, 2003. The role of free histibine in xylem loading nickel in Alyssum lesbiacum and Brassica Juncea. Plant Physiol 131: 716-724.
Kuo S, 1996. Phosphorus. Pp. 869-919. In: Sparks DL (eds). Methods of Soil Analysis. Part 3, Chemical Methods. ASA and SSSA, Madison, WI.
Khurana MPS and Jhanji S, 2014. Influence of Cd on dry matter yield, micronutrient content and its uptake in some soils. J Environ Biol 35: 865-870. 
Lagriffoul A, Mocquot B, Mench M and Vangronsveld J, 1998. Cd toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil 200: 241-250.
Lindsay WL and Norvell WA, 1978. Development of a DTPA soil test for Zn, iron, manganese and copper. Soil Sci Soc Am J 42(3): 421-428.
Liu WJ, Zhu YG and Smith FA, 2005. Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenate. Plant Soil 277: 127–138.
Macnicol RD and Beckett PHT, 1985. Critical tissue concentration of potentially toxic elements. Plant Soil 85: 107-129.
Marschner H, 1986. Mineral Nutrition of Higher Plants. Academic press, 2nd ed. institute of Plant Nutrition, University of Hohenheim, Stuttgart, Germany.
McBride MB, 1994. Environmental Chemistry of Soils. Oxford University Press, Oxford.
McKenna IM, Chaney RL and Williams FM, 1993. The effects of Cd and Zn interactions on the accumulation and tissue distribution of Zn and Cd in lettuce and spinach. Environ Pollut 79: 113-120.
McLean EO, 1982. Soil pH and lime requirement. Pp. 199-224. In: Page AL (eds). Methods of soil analysis. Part 2. Chemical and microbiological properties. ASA and SSSA, Madison, WI.
Moustakas NK, Akoumianaki-Ioannidou A and Barouchas PE, 2011. The effects of Cd and Zn interactions on the concentration of Cd and Zn in pot marigold (Calendula officinalis L.). Austr J Crop Sci 5(3): 277-282.
Nan Z, Li J, Zhang J and Clieng G, 2002. Cd and Zn interactions and their transfer in soil-crop system wider actual field. Sci Total Environ 285(1-3): 187-195.
Narwal RP, Singh M, Singh JP and Dahiya DJ, 1993. Cd×Zn interaction in maize grown on sewer water irrigated soil. Arid Soil Res Rehabilitation 7(2): 125-131.
Nelson DW and Sommers LE, 1982. Total carbon, organic carbon and organic matter. Pp. 539-579. In: Page AL (eds). Methods of Soil Analysis. Part 2. ASA and SSSA, Madison, WI.
Oliver DP, Wilhelm NS, McFarlane JD, Tiller KG and Cozend GD, 1997. Effect of soil and foliar applications of Zn on Cd concentrations in wheat grain. Aust J Exp Agric 37: 677-681.
Portman D, 2012. Cd and Zn Uptake in Wheat as Affected by Nitrogen Fertilization and Agricultural Management. Master thesis. Supervised by. Dr. Susan Tandy. Prof. Dr. Rainer Schulin.
Poschenrieder CH and Barceló J, 1999. Water relations in heavy metal stressed plants. Pp. 207-230. In: Prasad MNV (eds). Heavy Metal Stress in Plants. Springer-Verlag, Heidelberg.
Qureshi MI, D’Amici GM, Fagioni M, Rinalducci S and Zolla L, 2010. Iron stabilizes thylakoid protein-pigment complexes in Indian mustard during Cd-phytoremediation as revealed by BN-SDS-PAGE and ESI-MS/MS. J Plant Physiol 167(10): 761-770.
Saber Z, Pirdashti H and Heidarzade A, 2012. Osmoprimimg and hydro priming effects on seed and seeding parameters of two rapeseed (Brassica Napus L.) cultivars. Inter J Agric Res Rev 2(5): 547-554.
Safarzadeh S, Ronaghi A and Karimian N, 2013. Effect of Cd toxicity on micronutrient concentration, uptake and partitioning in seven rice cultivars. Arch Agro Soil Sci 59(2): 231-245.
Skrebsky EC, Tabaldi LA, Pereira LB, Rauber R, Maldaner J, Cargnelutti D, Gonçalves JF, Castro GY, Shetinger MRC and Nicoloso FT, 2008. Effect of Cd on growth, micronutrient concentration, and δ-aminolevulinic acid dehydratase and acid phosphatase activities in plants of Pfaffia glomerata. Brazilian J Plant Physiol 20(4): 285-294.
Smilde KW, Van Luit B and Van Driel W, 1992. The extraction by soil and absorption by plants of applied Zn and Cd. Plant Soil 143: 233-238.
Verloo M, Willaert G and Cottenie A, 1986. Determination of the upper critical levels of heavy metals in plant and soils. Studies in Environmental Science 29: 207-215.
Zhao ZQ, Zhu YG, Kneer R and Smith SE, 2005. Effect of Zn on Cd toxicity induced oxidative stressing winter wheat seedlings. J Plant Nutr 28: 1947-1959.
Zhong-qiu Z, Yong-guan Z and Yun-long C, 2005. Effect of Zn on Cd uptake by spring wheat (Triricum aestivum L.): long-time hydroponic study and short-time 109Cd tracing study. J Zhejiang Univ Sci 6 A (7): 643-648.