مقایسه روش‎های فرکتالی و رزتا در تخمین منحنی رطوبتی خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه مهندسی علوم خاک، دانشگاه تهران

2 2- دانشجوی دکتری گروه علوم خاک، دانشگاه تبریز

3 دانشیار گروه علوم خاک، دانشگاه گیلان

چکیده

مدل ونگنوختن اغلب برای توصیف منحنی رطوبتی خاک‎ استفاده می‎شود. هدف از این تحقیق، ارزیابی روشی برای تعیین پارامترهای m و α مدل ونگنوختن برای 100 نمونه خاک از استان گیلان با استفاده از بعد فرکتال منحنی رطوبتی است. دو روش که توسط لینهارد و همکاران و ونگنوختن برای تخمین m از شاخص توزیع اندازه منافذ مدل بروکز و کوری پیشنهاد شده بود، به‎کار رفت. در هر دو روش از رابطه بین شاخص توزیع اندازه منافذ مدل بروکز و کوری و بعد فرکتال منحنی رطوبتی استفاده شد. پارامترهای مدل ونگنوختن با استفاده از نرم‎افزار رزتا نیز برآورد و سپس مقادیر به‎دست آمده از رزتا و روش فرکتالی با مقادیر پارامترهای ونگنوختن تعیین شده از نرم‎افزار RETC با هم مقایسه شدند. نتایج نشان داد که نرم‎افزار رزتا برآورد بهتری از پارامترهای مدل ونگنوختن نسبت به روش فرکتالی ارائه می‎دهد. در ‎نهایت، پارامترهای α و m تخمین زده‎شده مدل ونگنوختن که از روش‎های مختلف فوق‎الذکر به‎دست آمده بودند در ترکیب با رطوبت اشباع اندازه‎گیری‎شده برای تخمین رطوبت خاک در پتانسیل‎های ماتریک مختلف به‎کار گرفته شده و با مقادیر تعیین شده توسط RETC از طریق برازش مدل ونگنوختن بر داده‎های اندازه‎گیری‎شده، مقایسه شدند. نتایج حاصل حاکی از تخمین بهتر منحنی رطوبتی با استفاده از روش فرکتال نسبت به رزتا است. بنابراین با وجود برآورد بهتر پارامترهای مدل ونگنوختن به‎وسیله نرم‎افزار رزتا نسبت به روش فرکتالی، پیش‎بینی مقدار رطوبت خاک با استفاده از رزتا دقیق‎تر از روش فرکتالی نمی‎باشد. چون تخمین مقدار رطوبت نتیجه برهمکنش بین پارامترهای مدل ونگنوختن، m و α است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of Fractal and Rosetta Approaches for Estimation of Soil Water Retention Curve

نویسندگان [English]

  • L Esmaeelnejad 1
  • J Seyedmohammadi 2
  • M Shabanpour 3
1
2
3
چکیده [English]

The van Genuchten (vG) function is often used to describe the soil water retention curve (SWRC) of unsaturated soils. The objective of this study was to evaluate a method to determine the vG model parameters m and α of 100 soil samples of Guilan province from the fractal dimension of SWRC. Also, we used two models introduced by Lenhard et al and vG for estimating m from pore size distribution index of Brooks and Corey (BC) model. In both of the mentioned methods, the relationship between pore size distribution index of BC and SWRC fractal dimension was used. Also, vG parameters using Rosetta software were estimated and then, the amounts of vG parameters from the Rosetta, fractal method and RETC were compared. Results showed that Rosetta software had a better estimation of vG parameters than the Rosetta. The estimated vG model parameters m and α obtained with the above-mentioned different methods, in conjunction with measured saturated water contents, were used to estimate water contents at different matric potentials and compared with determined values by RETC via fitting of vG model on the measured values. The estimated SWRC data via fractal method were compared with those obtained with the Rosetta model. Results showed that fractal method had more accurate performance for prediction of SWRC than the Rosetta. Even though, the Rosetta software could lead to better estimates of the vG model parameters than the fractal approach, it was not capable of predicting SWRC as accurately as the fractal approach. This is due to the fact that estimation of the water content is a result of an interaction between the estimated vG model parameters, α and m.

کلیدواژه‌ها [English]

  • Brooks and Corey
  • Lenhard
  • Tyler and Wheatcraft
  • van Genuchten parameters
Arya LM and Dierolf TS, 1992. Predicting soil moisture characteristics from particle-size distribution: An improved method to calculate pore radii from particle radii. Pp. 115-125. In: Van Genuchten MTh, Leij FJ and Lund LJ (eds.) Proceedings of the International Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. University of California Press, Riverside, CA.
Arya LM and Paris JF, 1981. A physic-empirical model to predict soil moisture characteristics from particle-size distribution and bulk density data. Soil Science Society of America Journal 45:1023-1030.
Bird NRA, Perrier E and Rieu M, 2000. The water retention function for a model of soil structure with pore and solid fractal distributions. European Journal of Soil Science 51:55-63.
Brooks RH and Corey AT, 1964. Hydraulic Properties of Porous Media. Hydrology Paper No. 3. Colorado State University, Fort Collins, CO.
Campbell GS, 1974. A simple method for determining unsaturated hydraulic conductivity from moisture retention data. Soil Science 117:311-314.
Clapp RB and Hornberger GM, 1978. Empirical equation for some soil hydraulic properties. Water Resources Research 14:601-604.
Cosby BJ, Hornberger GM, Clapp RB and Ginn TR, 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soil. Water Resources Research20:682-690.
De Gennes PG, 1985. Partial filling of a fractal structure by a wetting fluid. Pp. 227-241. In: Adler D, Fritzsche H and Ovshinsky SR (eds.) Physics of Disordered Materials, Chapter 19. Plenum Press, New York.
Esmaeelnejad L, Ramezanpour H, Seyedmohammadi J and Shabanpour M, 2015. Selection of a suitable model for the prediction of soil water content in north of Iran. Spanish Journal of Agricultural Research 13(1):e12-002.
Fredlund MD, Wilson GW and Fredlund DG, 2002. Use of the grain-size distribution for estimation of the soil-water characteristic curve. Canadian Geotechnical Journal 39:1103-1117.
Gardner WR, 1958. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Science85:228-232.
Ghanbarian-Alavijeh B, Liaghat A, Guan-Hua H and Van Genuchten MTh, 2010. Estimation of the van Genuchten soil water retention properties from soil textural data. Pedosphere20(4):456-465.
Gimenez D, Perfect E, Rawls WJ and Pachepsky Y, 1997. Fractal models for predicting soil hydraulic properties: a review. Engineering Geology 48:161-183.
Haverkamp R and Parlange JY, 1986. Predicting the water retention curve from particle-size distribution: I. Sandy soils without organic matter. Soil Science 142:325-339.
Haverkamp R, Leij FJ, Fuentes C, Sciortino A and Ross PJ, 2005. Soil water retention: I. Introduction of a shape index. Soil Science Society of America Journal 69:1881-1890.
Huang G and Zhang R, 2005. Evaluation of soil water retention curve with the pore-solid fractal model. Geoderma 127:52-61.
Huang G, Zhang R and Huang Q, 2006. Modeling soil water retention curve with a fractal method. Pedosphere 16:137-146.
Hunt AG and Gee GW, 2002. Water retention of fractal soil models using continuum percolation theory: tests of Hanford site soils. Vadose Zone Journal 1:252-260.
Hutson JL and Cass A, 1987. A retentivity function for use in soil-water simulation models. Soil Science 38:105-113.
Leij FJ, Haverkamp R, Fuentes C, Zatarain F and Ross PJ, 2005. Soil water retention: II. Derivation and application of shape index. Soil Science Society of America Journal69:1891-1901.
Lenhard RJ, Parker JC and Mishra S, 1989. On the correspondence between Brooks-Corey and van Genuchten models. Journal of Irrigation and Drainage Engineering 115:744-751.
Ma QL, Hook JE and Ahuja LR, 1999. Influence of three-parameter conversion methods between van Genuchten and Brooks-Corey functions on soil hydraulic properties and water-balance predictions. Water Resources Research 35:2571-2578.
Mandelbrot BB, 1983. The Fractal Geometry of Nature. W.H. Freeman, San Francisco.
MATLAB 8, 2012. Software for Technical Computing and Model-Based Design. The Math Works Inc.
Minasny B and McBratney AB, 2007. Estimating the water retention shape parameter from sand and clay content. Soil Science Society of America Journal 71:1105-1110.
Morel-Seytoux HJ, Meyer PD, Nachabe M, Tourna J, van Genuchten MT and Lenhard RJ, 1996. Parameter equivalence for the Brooks-Corey and van Genuchten soil characteristics: Preserving the effective capillary drive. Water Resources Research 32:1251-1258.
Pachepsky YA, Shcherbakov RA and Korsunskaya LP, 1995. Scaling of soil water retention using a fractal model. Soil Science 159:99-104.
Perfect E, 1999. Estimating soil mass fractal dimensions from water retention curves. Geoderma 88:221-231.
Perfect E, 2005. Modeling the primary drainage curve of prefractal porous media. Vadose Zone Journal 4:959-966.
Perrier E, Rieu M, Sposito G and de Marsily G, 1996. Models of the water retention curve for soils with a fractal pore size distribution. Water Resources Research 32:3025-3031.
Rawls WJ, Brakensiek DL and Saxton KE, 1982. Estimation of soil water properties. Transactions of the American Society of Agricultural Engineers 25:1316-1320.
Rawls WJ, Pachepsky Y and Shen MH, 2001. Testing soil water retention estimation with the MUUF pedotransfer model using data from the southern United States. Journal of Hydrology 251:177-185.
Rieu M and Sposito G, 1991. Fractal fragmentation, soil porosity, and soil water properties: I. Theory. Soil Science Society of America Journal 55:1231-1238.
Russo D, 1988. Determining soil hydraulic properties by parameter estimation: On the selection of a model for the hydraulic properties. Water Resources Research 24:453-459.
Saxton KE, Rawls WJ, Romberger JS and Papendick RI, 1986. Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal 50:1031-1036.
Schaap MG and Bouten W, 1996. Modeling water retention curves of sandy soils using neural networks. Water Resources Research 32:3033-3040.
Schaap MG, Leij FJ and van Genuchten MTh, 1998. Neural network analysis for hierarchical prediction of soil water retention and saturated hydraulic conductivity. Soil Science Society of America Journal 62:847-855.
Schaap MG, Leij FJ and van Genuchten MTh, 2001. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology 251:163-176.
Tinjum JM, Benson CH and Blotz LR, 1997. Soil-water characteristic curves for compacted clays. Journal of Geotechnical and Geoenvironmental Engineering 123:1060-1069.
Toledo PG, Novy RA, Davis HT and Scriven LE, 1990. Hydraulic conductivity of porous media at low water content. Soil Science Society of America Journal 54:673-679.
Tyler SW and Wheatcraft SW, 1990. Fractal processes in soil water retention. Water Resources Research 26:1047-1054.
van Genuchten MTh, 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of American Journal 44:892-898.
van Genuchten MTh, Leij FJ and Yates SR, 1991. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils. EPA Report 600/2-91/065. US Salinity Laboratory, USDA, ARS, Riverside, CA.
Vereecken H, Maes J, Feyen J and Darius P, 1989. Estimating the soil moisture retention characteristics from texture, bulk density and carbon content. Soil Science 148:389-403.
Wosten JHM, 1997. Pedotransfer functions to evaluate soil quality. Pp. 221-246, In: Gregorich EG and Carter MR (eds.) Soil Quality for Crop Production and Ecosystem Health, Chapter 10. Elsevier, Amsterdam.
Wosten JHM, Finke PA and Jansen MJW, 1995. Comparison of class and continuous pedotransfer functions to generate soil hydraulic characteristics. Geoderma 66:227-237.
Xu Y, 2004. Calculation of unsaturated hydraulic conductivity using a fractal model for the pore-size distribution. Computers and Geotechnics 31:549-557.