تأثیر کاربرد کودهای آلی و فسفر بر تجمع کروم VI در گیاه تربچه آبیاری شده با آب آلوده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 1_ دانش آموخته کارشناسی ارشد، گروه مهندسی آب و خاک، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، ایران

2 2_ دانشیار گروه مهندسی آب و خاک، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، ایران

3 3_ دانشیار گروه مهندسی زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، ایران

4 4_ مربی گروه مهندسی باغبانی و گیاه پزشکی، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، ایران

چکیده

به‌منظور بررسی تأثیر کاربرد کودهای فسفره و ترکیبات آلی بر برخی ویژگی‌های رشدی گیاه تربچه (Rhaphanus sativus L) آبیاری شده با آب آلوده به کروم VI با غلظت 25/0 میلی‌گرم بر لیتر، آزمایشی در قالب بلوک‌های کامل تصادفی با سه تکرار در شرایط گلخانه در دانشکده کشاورزی دانشگاه صنعتی شاهرود انجام شد. تیمارهای آزمایشی شامل: شاهد، کود دی‌آمونیوم‌فسفات (41 میلی‌گرم فسفر بر کیلوگرم)، کود سوپر ‌فسفات‌ تریپل (41 میلی‌گرم فسفر بر کیلوگرم)، پودر یونجه (1 درصد)، اسید ‌هومیک (38/1 گرم بر کیلوگرم)، کود دی‌آمونیوم ‌فسفات + پودر یونجه، کود دی‌ آمونیوم‌ فسفات+اسید ‌هومیک، سوپر‌ فسفات تریپل+اسید هومیک و سوپر ‌فسفات ‌تریپل+پودر یونجه بودند. نتایج تجزیه واریانس نشان داد که از نظر فسفر محلول خاک، کروم VI ریشه، هدایت الکتریکی (EC) و pH اختلاف معنی‌داری بین تیمارها وجود داشت. مؤثرترین تیمار در کاهش غلظت کروم VI ریشه در کاربرد ترکیبی سوپر فسفات‌ تریپل به‌همراه اسید ‌هومیک مشاهده شد که باعث کاهش 5/57 درصدی نسبت به شاهد گردید. مقدار تجمع کروم VI در ریشه 11/59 درصد بیشتر از اندام‌های هوایی گیاه تربچه بود. با‌ توجه به خوراکی بودن ریشه گیاه تربچه، به‌نظر می‌رسد استفاده از کودهای فسفره و ترکیبات آلی می‌تواند سبب کاهش جذب کروم به‌وسیله گیاه تربچه و مانع از تجمع کروم VI در اندام‌های گیاه به‌خصوص ریشه شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Organic and Phosphorus Fertilizers Application on Chromium VI Accumulation in the Radish Irrigated with Contaminated Water

نویسندگان [English]

  • GH Seydali 1
  • A Abbaspour2 2
  • HR Asghari3 3
  • H Contaminated Water 4
1
2
3
4
چکیده [English]

In order to evaluate the effect of phosphate fertilizers and organic compounds on some growth characteristics of the radish (Rhaphanus sativus L) irrigated with chromium- contaminated water at the concentration of 0.25 mg L-1, a greenhouse experiment was conducted at the Faculty of Agriculture, Shahrood University of Technology as a randomized complete block design with three replications. The treatments were: control, di-ammonium phosphate (41 mg P kg-1), triple superphosphate (41 mg P kg-1), alfalfa powder (1%), humic acid (1.38 mg kg-1), di-ammonium phosphate + alfalfa powder, humic acid + di-ammonium phosphate, triple super phosphate + humic acid and triple superphosphate + alfalfa powder. Analysis of variance revealed that there were significant differences among treatments on soluble phosphorus of soil, root chromium VI, electrical conductivity (EC) and pH. The most effective treatment for reducing chromium VI concentration of the radish root, was observed in application of triple super phosphate combined with humic acid, so that its concentration was reduced by 57.5 percent in comparison to the control treatment. The concentration of chromium VI in the root was 59.11 percent more than thet in the shoot. Considering the edible root of radish, it seems the use of phosphate fertilizers and organic compounds can decrease the absorption of chromium in the radish plant and prevent the accumulation of chromium VI in the tissues of the plant, especially in root.

کلیدواژه‌ها [English]

  • : Alfalfa Powder
  • Cr VI
  • Humic acid
  • Phosphorus
  • Radish
 پیروز پ. 1391. بررسی فیزیولوژیک گیاه آفتابگردان تحت تنش کروم: تأثیر بر رشد، تجمع و القای تنش اکسیداتیو در ریشه آفتابگردان(Helianthus annuus). زیست‌شناسی گیاهی، سال 4، شماره 11، صفحه‌های 73 تا 86 .
زرین کفش م، 1372. خاک‌شناسی کاربردی: ارزیابی و مورفولوژی و تجزیه‌های کمی خاک، آب و گیاه. انتشارات دانشگاه تهران، صفحه‌های 128 تا 134.
قانعیان م، جمشیدی ب، امرالهی م، دهواری م و تقوی م، 1392. کاربرد فرایند جذب زیستی توسط پودر هسته انار در حذف کروم شش ظرفیتی از محیط آبی. کومش، جلد 15، شماره 2 (پیاپی 50)، صفحه‌های 205 تا 211.
محمدی ثانی م، آستارایی ع، فتوت ا، لکزیان ا و طاهری م، 1389. بررسی تاثیر زئولیت و سوپر فسفات تریپل بر توزیع سرب، روی و کادمیوم در ضایعات معدن. نشریه آب و خاک (علوم و صنایع کشاورزی)، جلد 25، شماره 1، صفحه‌های  42 تا 50.
Abbaspour A, Kalbasi M, and Shariatmadari H, 2004. Effect of steel converter sludge as Iron fertilizer and soil      amendment in somecalcareous soils. Journal of Plant Nutrition 27(2): 377-394.
Afyuni M, Karami M, and Schulin R, 2007. Effects of sewage sludge application on heavy metals status in soil and wheat.In: Biogeochemistry of trace elements: Environmental, Protection, Remediation and Human Health, China, 576.
Alberts JJ, Takacsa M and Pattanayekc M, 2000.Influence of IHSS standardand reference materials on copper and mercury toxicity to Vibrio fischeri. Acta Hydrochimica et Hydrobiologica 28: 428–435.
Allison LE and Moodie CD, 1965. Carbonate. P 1379-1396, In: Black, C.A., Evans, D.D., White, L.J., Ensminger, L.E., and Clark, F.E (eds.), Methods of Soil Analysis. American Society of Agronomy, Madison, WI.
Alvarez PC and Blanco M, 2006. The adsorption of chromium (VI) from industrial wastewater by acid and base-activated lignocellulosic residues. Journal of Hazardous Materials 409(6): 60-67.  
Bartlett RJ and Kimble JM, 1976. Behavior of chromium in soils. II. Hexavalent forms. Journal of Environmental Quality 5(4): 383-386.
Bigham JM 1996. Method of soil analysis. Part 3. Chemical methods, American Society of Agronomy, Inc, Madison.
Bolan NS and Thiagarajan S, 2001. Retention and plant availability of chromium in soils as affected by lime and organic matter amendments. Australian Journal of Soil Research 39: 1091–1104.
Bremner JM and Mulvaney, C.S. 1982. Total nitrogen. Pp. 1119-1123. In: A.L. Page, R.H. Miller and D.R. Keeny, (Eds.), Methods of Soil Analysis, American Society of Agronomy and Soil Science Society of America, Madison.
 Gee GW and JW Bauder. 1986. Particle-size analysis. Pp. 383-411. In A Klute (ed.) Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Agronomy Monograph No. 9 (2ed). American Society of Agronomy/Soil Science Society of America, Madison, WI.
Hara M, Ito F, Asai T and Kuboi T, 2009. Variation in Amylase Activities in Radish (Raphanus sativus) CultivarsPlant Foods for Human Nutrition 64: 188–192.
Iskandar IK, 2001. Environmental restoration of metals contaminated soils. lewis Publishers.
James BR, and Bartlett RJ, 1984. Plant-soil interactions of chromium Journal of Environmental Quality 13: 67–70.
Kabata-pendias  A and Pendias H, 1999. biogeochemistry of trace elements,  2nd. , Wyd nauk PVEN, Warszava (in Polish).
Kabata-pendias A and Pendias H, 2001. Trace metals in soils and plants, 3nd edition,CRC Press Inc.,Boca Rot on, Florida,USA.
Kashem MA and Sing BR, 2001. Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH, and solubility of Cd, Ni, and Zn. Nutrient Cycling in Agroecosystems 61: 247-255.
Lee DY, Shih Y, Zheng HC, Chen CP, Juang WK and Lee JF, 2006. Using the Selective Ion Exchange Resin Extraction and XANES Methods to Evaluate the Effect of Compost Amendments on Soil ChromiumVI Phytotoxicity Plant and Soil 281(1-2): 87-96.
Lo´pez-Bucio J, Cervante C and Ortiz-Castro R, 2014. Phosphate relieves chromium toxicity inArabidopsis thaliana plants by interfering with chromate uptake. Springer Science+business Media New York: 363-270.
Marius GHEJU, Ionel balcu and Mihaela ciopec, 2009. Analysis of hexavalent chromium uptake by plants inpolluted soils. Ovidius University Annals of Chemistry 20 (1): 127-131.
Mathe–Gaspar G, Anton A, 2002. Heavy metal uptake by two radish varieties. Acta Biologica Szegediensis 46: 113-114.
Miller RO, 1998. Nitric-perchloric acid wet digestion in an open vessel. Pp In: Kalra YP, ed., Handbook of Reference Methods for Plant Analysis. CRC Press, Taylor & Francis, London 57-61.
Minaxi SJ, 2010. Disease suppression and crop improvement in moong beans (Vigna radiata) through Pseudomonas and Burkholderia strains isolated from semi arid region of Rajasthan. Biological Control 55 (6): 799-810.
Mireles A, 2004. Heavy metal accumulation in plants and soil irrigated with waste water from Mexico city. Nuclear Instruments and Methods in Physics Research B 219-220: 187-190.
Mukherjee A and Zimmerman AR, 2013. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar soil mixtures. Geoderma 193–194: 122–130.
Olsen SR, Cole CV, Watanabe FS and Dean CA, 1954. Estimation of available phosphorous in soils by extraction with sodium bicarbonate. Soil Science Society of America Journal 21: 144 - 149.
Pawlowski L, 1992. Standard methods for the examination of water and wastewater. In: Arnold E. Greenberd, Lenore S. Clesceri, Andrew D. Eaton (eds). Journal of Water environment t federation. 18th ed, Alexandria 1025-1030.      
Qian H, Sun Z, Sun l and Jiang Y, 2013. Phosphorus availability changes chromium toxicity in the freshwater alga Chlorella vulgaris. Chemosphere 93 (6): 885-891.
Scheckel K and Ryan J, 2003. In vitro formation of pyromorphite via reaction of Pb source with soft-drink phosphoric acid. Science of the Total Environment 302: 253-265.
Stepniewska Z and Bucior K, 2001. Chromium contamination of soils, water, and plants in the vicinity of a tannery water lagoon. Environmental Geochemistry and Health 23(3) 241-245.
Tappero R, Peltier E,Gräfe M, Heidel K, Ginder-Vogel M, Livi KJT, Rivers ML, Marcus MA, Chaney RL and Sparks DL, 2007. Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. News in Physiological Sciences 175: 641-654.
Vitoria AP, Cunha MD, Azevedo RA, 2005. Ultra structural changes of Radish leaf exposed to cadmium. Environ. Journal of experimental botany 58:47-52.
Whalen J.K, and Chang, C, 2002. Phosphorus sorption capacities of calcareous soil receiving cattle manure application for 25 years. Communication of Soil Science and Plant Analysis 23: 1011-1026.