امکان‌سنجی کاربرد روش‌های داده‌کاوی در تخمین طبقه کیفی آب رودخانه آجی‌چای

نوع مقاله: مقاله پژوهشی

نویسندگان

1 1-‌ استداریار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

2 دانش‌آموخته کارشناسی ارشد عمران-آب، باشگاه پژوهشگران جوان و نخبگان، واحد مراغه، دانشگاه آزاد اسلامی، مراغه، ایران

چکیده

دسترسی به منابع آب پاک و با کیفیت یکی از دغدغه‌های اساسی انسان از دیرباز بوده است. از این‌ رو تعیین کیفیت آب برای مصارف مختلف از جمله آبیاری در مناطق مختلف بسیار ضروری می‌باشد. در این تحقیق، ابتدا کیفیت آب آبیاری در رودخانه آجی‌چای در 4 ایستگاه آخولا، ارزنق، مرکید و ونیار توسط دیاگرام USSL طبقه‌بندی شد. سپس امکان استفاده از روش‌های طبقه‌بندی‌کننده بردار پشتیبان، K-نزدیک‌ترین همسایگی و شبکه عصبی مصنوعی در تخمین طبقه کیفی آب با استفاده از پارامترهای هیدروشیمیایی مختلف مورد سنجش قرار گرفت. ارزیابی عملکرد روش‌های داده‌کاوی نشان‌دهنده دقت بالا و عملکرد بسیار مناسب این روش‌ها در تعیین طبقه کیفی آب می‌باشد. در این تحقیق بر اساس آماره‌های کاپا و نرخ خطا، روش‌های مورد استفاده از نظر دقت عملکرد رتبه‌بندی گردید. با بررسی دقیق نتایج مشاهده گردید که روش طبقه‌بندی‌کننده بردار پشتیبان که با بهره‌گیری از توابع کرنل توانایی بالایی در حل مسائل مختلف دارد، با میانگین رتبه 25/1 به‌عنوان کارامدترین روش داده‌کاوی و پس از آن روش K-نزدیک‌ترین همسایگی با میانگین رتبه 75/1 و شبکه عصبی مصنوعی با میانگین رتبه 2 به‌عنوان روش‌هایی مناسب جهت تعیین طبقه کیفی آب می‌باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Feasibility Study of Data Mining Methods Application to Estimate Aji Chai River’s Water Quality Classification

نویسندگان [English]

  • MT Sattari1 1
  • R Rezazadeh Joudi 2
چکیده [English]

Accessing to clean and high quality water sources has always been one of the main concerns of humanity. Therefore, determination of water quality is essential for various applications e.g. irrigation. In this study, irrigation water of Ajichai River in stations (Akhula, Arzanagh, Markid and Vaniar) is initially classified using USSL diagram. After that, feasibility of support vector classifier, K-nearest neighborhood and artificial neural network classification methods is assessed. Evaluation of data mining methods presents high accuracy and performance of these methods in assessment of water quality levels. In this study, the aforementioned methods are ranked by accuracy using kappa and error rate statistics. Careful examination of the results demonstrates that the support vector classifier which uses kernel functions is highly capable of solving various problems, and with an average ranking of 1.25 is the most efficient mining method followed by K- nearest neighborhood method with an average ranking of 1.75 and artificial neural network with an average rank of 2. These are also suitable methods for determining water quality classification.

کلیدواژه‌ها [English]

  • Artificial neural network
  • K-nearest neighborhood
  • Support vector classifier
  • USSL diagram
  • Water quality classification
بانژاد ح، کمالی م، امیر مرادی ک و علیائی ا، 1392. تخمین برخی پارامترهای کیفی رودخانه‌ها با استفاده از مدل هیبرید شبکه‌های عصبی-موجکی (منطقه مطالعاتی: رودخانه جاجرود تهران و قره سو کرمانشاه). مجله سلامت و محیط، جلد 6، شماره 3، صفحه‌های 277 تا 294.
بذرافشان ا، سلاجقه ع، مهدوی م، بذر افشان ج و فاتحی مرج ا، 1393. بررسی کارآیی مدل‌های هیبرید شبکه عصبی مصنوعی-استوکاستیک در پیش‌بینی خشک‌سالی‌های هیدرولوژیکی با استفاده از آماره کاپا (مطالعه موردی: حوزه آبخیز رودخانه گاماسیاب). علوم ومهندسی آبخیزداری ایران، جلد 8، شماره 27، صفحه‌های 35 تا 48.
ستاری م‌ت، عباسقلی نائب‌زاد م و میر عباسی نجف آبادی ر، 1393. پیش‌بینی کیفیت آب‌های سطحی با استفاده از روش درخت تصمیم. مهندسی آبیاری و آب، جلد 4، شماره 15، صفحه‌های 76 تا 88.
شهرابی ج و ذوالقدر شجاعی ع، 1390. داده‌کاوی پیشرفته، انتشارات جهاد دانشگاهی واحد صنعتی امیرکبیر.
میرزاوند م، قاسمیه ه، ساداتی‌نژاد س‌ج و اکبری م، 1394. مقایسه مدل‌های شبکه عصبی مصنوعی و رگرسیون چندمتغیره در تخمین تغییرات کیفی آب‌ زیرزمینی (مطالعه موردی: آبخوان کاشان). دانش آب و خاک، جلد 25، شماره 2، صفحه‌های 207 تا 220.
Anonymous, 1954. Diagnosis and Improvement of Saline and Alkali Soils: U.S. Dept. Agric. Handbook No.60, 160 p.
Chebud Y, Naja GM, Rivero RG and Mellese AM, 2012. Water quality monitoring using remote sensing and artificial neural network. Water, Air and Soil Pollution 223: 4875-4887.
Dogan E, Sengorur B and Koklu R, 2009. Modeling biological oxygen demand of the Melen river in Turkey using an artificial neural network technique. Journal of Environmental Management 90: 1229-1235.
Kumar MN, Murthy CS, Sesha Sai MVR and Roy PS, 2009. On The use of standardized precipitation index (SPI) for drought intensity assessment. Meteorological Applications 16: 381- 389.
Modaresi F, Araghinejad S, 2014. A comparative assessment of support vector machines, probabilistic neural networks and K-nearest neighbors algorithms for water quality classification. Water Resources management 28: 4095-4111.
Saghebian SM, Sattari MT, Mirabbasi R and Pal M, 2014. Ground water quality classification by decision tree method in Ardebil region, Iran. Arabian Journal of Geosciences 7(11): 4767-4777.
Sahu M, Mahapatra SS, Sahu HB and Patel RK, 2011. Prediction of water quality index using neuro fuzzy inference system. Water Quality, Exposure and Health 3: 175-191.
Sattari MT, Rezazazadeh Joudi A and Kusiak A, 2015. Estimation of water quality parameters with data-driven models. American Water Works Association 108(4): 232-239.
Sengorur B, Koklu R and Ates A, 2015. Water quality assessment using artificial intelligence techniques: SOM and ANN- A case study of Melen River. Water Quality, Exposure and Health 7(4): 469-490.
Vapnik VN, 1995. The Nature of Statistical Learning Theory. Springer-Verlag, New York.
Yang Su M, 2011. Real-Time anomaly detection systems for denial-of-service attacks by weighted K-nearest neighbor classifiers. Expert Systems with Applications 38: 3492–3498.