ارزیابی اثرات تغییر اقلیم بر طول دوره رشد و تبخیر- تعرق گندم با استفاده از مدل CERES-Wheat (مطالعه موردی: مشهد)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی، دانشگاه زابل

2 دانشیار گروه مهندسی آب، دانشگاه زابل

3 عضو هیئت علمی مؤسسه تحقیقات خاک و آب کرج

4 دانشیار دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد لاهیجان

5 عضو هیئت علمی مرکز تحقیقات کشاورزی و منابع طبیعی استان خراسان رضوی

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Effects of Climate Change on Wheat Growing Period and Evapotranspiration Using the CERES-Wheat Model (Case Study: Mashhad)

نویسندگان [English]

  • Z Saadati 1
  • M Delbari 2
  • M Panahi 3
  • E Amiri 4
  • MH Rahimian 5
  • M Ghodsi 5
چکیده [English]

Study of the climate change impacts on agricultural products and agro-climatic variables can
improve the management strategies regarding to the agricultural demands in future decades. The
objective of this study is to evaluate the effects of climate change on growing period and
evapotranspiration of wheat inMashhad. In this study the LARS-WG model was used to simulate the
weather data of Mashhad station under A1B, A2 and B1 scenarios in the time periods of 2011-2030
and 2046-2065. The effects of climate change on growing period and evapotranspiration of wheat
was simulated by the CERES-Wheat model. The obtained results in this study show that the
temperature will be increase however, rainfall is going to be decreased. The temperature and rainfall
variations will be sever in the A2 scenario compared with the other scenarios. Also, the results show
that the time interval from planting to full maturity of all wheat varieties will decrease in the future.
Evapotranspiration will be increased in the period of 2011-2030 while it will be decreased in the
period of 2046-2065 compared to the base period. The increase of evapotranspiration in the period of
2011-2030 in A1B, A2 and B1 scenarios will be 3.51, 1.75 and 3.8 percent, respectively and the
decrease of evapotranspiration in the period of 2046-2065 in A1B, A2 and B1 scenarios will be 4.09,
4.68 and 4.39 percent, respectively. In general, in effect of climate change, the growing period and
then the total water requirement of the crop will decrease in the future. So the cultivars of crop with
a shorter lifetime and having the higher yield must be used.

اندرزیان ب، بخشنده ع، بنایان م و امام ی، 1387. ارزیابی مدل شبیه­سازی CERES-Wheat در شرایط اقلیمی اهواز. مجله پژوهش­های زراعی ایران، جلد 6، شماره 1، صفحه­های 11 تا 22.
بابائیان ا و کوهی م، 1391. ارزیابی شاخص­های اقلیم کشاورزی تحت سناریوهای تغییر اقلیم در ایستگاه­های منتخب خراسان رضوی. نشریه آب و خاک (علوم و صنایع کشاورزی)، جلد 26، شماره 4، صفحه­های 953 تا 967.
سلطانی ا و قلی­پور م، 1385. شبیه­سازی اثر تغییر اقلیم بر رشد، عملکرد و مصرف آب نخود. مجله علوم کشاورزی و منابع طبیعی، سال 13، شماره 2، صفحه­های 69 تا 79.
سلیمانی ننادگانی م، پارسی نژاد م، عراقی نژاد ش و مساح بوانی ع، 1391. بررسی رخداد تغییر اقلیم و تأثیر آن بر زمان کاشت، طول دوره رشد و نیاز آبی گندم زمستانه (مطالعه موردی: بهشهر). مجله پژوهش آب ایران، سال 6، شماره 10، صفحه­های 11 تا 20.
کوچکی ع، نصیری محلاتی م، شریفی ح­ر، زند ا و کمالی غ­ع، 1380. شبیه­سازی رشد، فنولوژی و تولید ارقام گندم در اثر تغییر اقلیم در شرایط مشهد. مجله پژوهشی بیابان، جلد 6، شماره 2، صفحه­های 117 تا 127.
ماهرو کاشانی ا­ح، 1389. شبیه­سازی رشد و نمو گندم با استفاده از مدل DSSAT در شرایط محیطی استان گرگان. پایان­نامه کارشناسی ارشد، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، 105 صفحه.
Allen LH, 1990. Plant responses to rising carbon dioxide and potential interactions with air pollutants. Journal of Environmental Quality 19: 15-34.
Asadi ME and Clemente RS, 2003. Evaluation of CERES-Maize of DSSAT model to simulate nitrate leaching, yield and soil moisture content under tropical conditions. Journal of Food, Agriculture & Environment (JFAE) 1(3&4): 270-276.
Barrow E and Yu G, 2005. Climate Scenario for Alberta. A report prepared for the prairie. Adaptation Research Climate Research Services.
Cure JD and Acock B, 1986. Crop responses to carbon dioxide doubling: a literature survey. Agricultural and Forest Meteorology 38: 127-145.
Curry RB, Peart RM, Jones JW, Boote KJ and Allen LH, 1990. Simulation as a tool for analyzing crop response to climate change. Transactions of the ASAE 33(3): 981-990.
Dettori M, Cesaraccio C, Motroni A, Spano D and Duce P, 2011. Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia, Italy. Field Crops Research 120: 179–188.
Eitzinger J, Trnka M, Hosch J, Zalud Z and Dubrovsk M, 2004. Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions. Ecological Modeling 171: 223-246.
Gondim R, Castro MA, Maia A and Evangelista S, 2009. Climate change and irrigation water requirement at Jaguaribe river basin, semi-arid northeast of Brazil. IOP Conf. Series, Earth and Environmental Science 6(29): 292032.
Gordon C, Cooper C, Seinor CA, Banks H, Gregory JM, Johns TG, Mitchell JFB and Wood RA, 2000. The simulation of SST, seas ice extents and ocean heat transports in a version of the Hadley Center coupled model without flux adjustment. Climate Dynamics 16: 147-168.
Hoogenboom G, Jones JW, Porter CH, Wilkens PW, Boote KJ, Batchelor WD, Hunt LA and Tsuji GY, 2004. DSSAT 4., Overview, vol. 1. ICASA, Uni. Hawaii, Honolulu, USA.
IPCC, 1992. IPCC first report on climate change: The 1990 and 1992 IPCC assessment. WMO, Rome, Italy, 168p.
IPCC, 2001. Summary for policy makers Climate change. The scientific basis. Contribution of working group I to the Third assessment report. Cambridge University Press, England.
IPCC, 2007. Summary for policy makers Climate change: The physical science basis. Contribution of working group I to the forth assessment report. Cambridge University Press, England, 881p.
Jianqiang He, Huanjie Cai and Jiangping Bai, 2013. Irrigation scheduling based on CERES-Wheat model for spring wheat production in the Minqin Oasis in Northwest China. Agricultural Water Management 128: 19– 31.
Jones CA and Kiniry JR, 1986. CERES–Maize: A Simulation Model of Maize Growth and Development, Texas A&M Press: College Station, Texas, 194p.
Jones JW, Hoogenboom G, Porter CH, Boote KJ,  Batchelor WD, Hunt LA, Wilkens P W, Singh U, Gijsman AJ and Ritchie JT, 2003. The DSSAT cropping system model. European Journal of Agronomy 18: 235–265.
Kimball BA and Idso SB, 1983. Increasing atmospheric carbon dioxide: Effects on crop yield, water use and climate. Agricultural Water Management 7: 55-72.
Knorzer H, Grozinger H, Graeff-Honninger S, Hartung k, Piepho HP and Claupein W, 2011. Integrating a simple shading algorithm into CERES-wheat and CERES-maize with particular regard to a changing microclimate within a relay-intercropping system. Field Crops Research 121: 274-285.
Lhomme JP, Mougou R and Mansour M, 2009. Potential impact of climate change on durum wheat cropping in Tunisia. Journal of Climatic Change 96(4): 549-564.
Matthews RB, Kropff MJ, Horie T and Bachelet D, 1997. Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation. Agricultural Systems 54(3): 399-425.
Rawlins SL, 1991. Global environmental change and agriculture. Journal of Production Agriculture 4: 291-293.
Rosenberg NJ, Kimball BA, Martin P and Cooper CF, 1990. From Climate and CO2 Enrichment to Evapotranspiration. Climate Change and U.S. Water Resources, 286p.
Rosenzweig C, 1989. Global climate change: Predictions and observations. American Journal of Agricultural Economics 71(5): 1265-1271.
Sinclair TR and Seligman NG, 1995. Global environment change and simulated forage quality of wheat. I: No stressed conditions. Field Crops Research 40(1): 19-27.
Sionit N, Hellmers H and Strain BR, 1980. Growth and yield of wheat under CO2 enrichment and water stress. Crop Science 20: 456-458.
Soltani A and Hoogenboom G, 2007. Assessing crop management options with crop simulation models based on generated weather data. Field Crops Research 103(3): 198-207.