کاربرد و مقایسه توابع انتقالی پارامتریک مدل ونگنوختن در شبیه سازی جریان غیرماندگار آب در خاک کشت شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد گروه علوم خاک، دانشگاه ارومیه، ارومیه

2 دانشیار گروه علوم خاک، دانشگاه ارومیه، ارومیه

3 دانشیار گروه مهندسی آب، دانشگاه محقق اردبیلی، اردبیل

چکیده

در سالهای اخیر استفاده از توابع انتقالی به عنوان راهکاری که ویژگیهای هیدرولیکی را از پارامترهای زودیافت
خاک برآورد کند، موردتوجه قرار گرفته است. در این پژوهش، منحنی رطوبتی یک خاک لوم رسی به وسیله برخی از
توابع انتقالی محلّی و بین المللی برآورد گردید. منحنی رطوبتی خاک با روش مستقیم در آزمایشگاه اندازهگیری و اعتبار
توابع انتقالی موردمطالعه برای برآورد منحنی مذکور بررسی گردید. با واردکردن منحنی رطوبتی برآورد شده و اندازه -
گیری شده به مدل هایدروس یک بعدی، جریان آب در این خاک شبیهسازی و دقت کاربردی توابع انتقالی از نظر شبیه-
سازی جریان آب در خاک به طور کمی مقایسه شد. نتایج نشان داد بهترین توابع انتقالی در شبیهسازی منحنی رطوبتی
Y-(2), Y-) توابع نوع اول و دوم یعقوبی ،(Sepas) خاک موردمطالعه برای عمق 15 سانتیمتر، بهترتیب تابع سپاسخواه
NRMSE 0 میباشند. مقدار / کمتر از 1 (NRMSE) با میانگین جذر مربعات خطای نرمال (Gh-( 1)) و تابع دوم قربانی(( 2 )
0 و برای بیشتر توابع انتقالی محلّی کمتر / منحنی رطوبتی خاک زیرسطحی، برای بیشتر توابع انتقالی بینالمللی کمتر از 3
شبیه سازی تغییرات رطوبت نسبت به زمان توسط هایدروس، با بهکارگیری توابع ،NRMSE 0 برآورد گردید. مقدار / از 2
0 برآورد گردید. میتوان نتیجهگیری کرد که در ارزیابی / 0 تا 84 / انتقالی مختلف در خاک سطحی و زیرسطحی بین 07
اعتبار توابع انتقالی باید به نوع کاربردی که قرار است از آنها استفاده گردد توجه شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application and Comparison of Parametric Pedotransfer Functions of van Genuchten Model for Transient Water Flow Simulation in a Cultivated Soil

نویسندگان [English]

  • S Jafari 1
  • H Khodaverdilou 2
  • A Rasoulzadeh 3
1
2
3
چکیده [English]

In recent years, using pedotransfer functions (PTFs) has been considerated as a way to estimate
the hydraulic properties of soil from easily to measured parameters. In this research, soil water
retention curve of a clay loam soil was estimated using some of the global and regional PTFs. Soil
water retention curve (SWRC) was constructed using direct measuring methods in laboratory and
the validation of PTFs for estimation of the mentioned curve was evaluated. By entering the
measured and estimated SWRC to Hydrus-1D, soil water flow was simulated and the accuracy of
the PTFs for simulation of water flow was quantitatively compared. The results showed that the
functions of Sepaskhah (Sepas), Yaghubi-1(Y-(1)), Yaghubi-2(Y-(2)) and Ghorbani-2(Gh-(2)) with
normalized root mean square error (NRMSE) values of less than 0.1 could reasonably predict SWRC
of the surface soil. In prediction of SWRC of subsurface soil, the NRMSE values of most global
PTFs were less than 0.3 and for most of the regional PTFs were less than 0.2. NRMSE values in
simulation of water content of surface and subsurface soils using Hydrus by applying different
PTFs were between 0.07 to 0.84, respectively. It can be concluded that in running validating phase
one should consider the objective for which the PTFs may be applied.

کلیدواژه‌ها [English]

  • Hydrus-1D
  • Pedotransfer functions
  • Soil hydraulic properties
  • Soil water flow
منابع مورد استفاده
ترابی فارسانی ن و  قهرمان ب ، 1386. مقایسه چند تابع انتقالی متداول برای برآورد منحنی رطوبتی خاک در چند خاک در ایران. مجله آبیاری و زهکشی ایران. جلد 1، شماره 2، صفحه­های25 تا 57.
ثامنی ع، پاکجو م، موسوی ع و کامکار حقیقی ع، 1393. ارزیابی چند رابطه نفوذ آب به خاک با کاربرد آب های شور و سدیمی. نشریه پژوهش آب در کشاورزی،  جلد 28، شماره 2، صفحه­های 395 تا408.
جعفری گیلانده ص، رسول­زاده ع و خداوردیلو ح، 1392. ارزیابی برخی توابع انتقالی برای شبیه­سازی جریان­ غیرماندگار آب در خاک. نشریه حفاظت منابع آب و خاک، جلد 2، شماره 4، صفحه­های 1 تا 13.
خداوردی­لو ح، قربانی دشتکی ش، نریمانی ز و شهنازی ا،1390. ارزیابی کاربردی توابع انتقالی پارامتریک در برآورد رطوبت در برخی خاک­های آهکی. صفحه­های 1 تا 5، دوازدهمین کنگره علوم خاک ایران، 12 الی 14 شهریور، دانشگاه تبریز، تبریز.
قربانی دشتکی ش و همایی م، .1381 برآورد پارامتریک توابع هیدرولیکی بخش غیراشباع خاک با استفاده از توابع انتقالی. مجله تحقیقات مهندسی کشاورزی، شماره 12، صفحه­های 1 تا 16.
موذن زاده ر، قهرمان ب، داوری  ک و خشنود یزدی ع، 1388. ارزیابی عملکرد چند تابع انتقالی داخلی در برآورد منحنی نگهداشت رطوبتی. نشریه آب و خاک ( علوم و صنایع کشاورزی)، جلد 23 ، شماره 4، صفحه­های 55 تا 66.
یعقوبی ع و رسول­زاده ع، 1388. ایجاد توابع انتقالی پارامتریک برای برآورد منحنی رطوبتی خاک. صفحه­های 1 تا8، هشتمین کنفرانس هیدرولیک ایران، 24 الی26 آذر، دانشگاه تهران، تهران.
Acutis M and Donatella M, 2003. Soil part 2: software to estimate soil hydrological parameters and functions. Europe. J. Agron 18: 373-377.
Blake GR and KH Hartge, 1986. Bulk Density. Pp.363-375. In: Klute A, (ed.) Methods of Soil Analysis.  Part 1 - Physical and Mineralogical Methods Second Edition.  J. ASA and SSSA. Madison WI. 
Gee GH, Bauder JW, 1986. Particle size analysis, Pp.383-409. In Methods of Soil Analysis. Part 2, Physical properties. SSSA: Madison,WI.
Feddes RA, Kowalik PJ and Zaradny H, 1978. Simulation of Field Water Use and Crop Yield. John Wiley & Sons. New York, NY.
Givi J, Prasher SO and Patel RM, 2004. Evaluation of pedotransfer functions in predicting the soil water contents at field capacity and wilting point. Agric Water Manag 70: 83 – 96.
Minasny B, Mc Bratney AB and Bristaw KL, 1999. Comparison of different approaches to the development of pedotransfer functions for water retention curves. Geoderma 93: 225-253.
Nemes A, Schaap M G and Wösten J H M, 2003. Functional evaluation of pedotransfer functions derived from different Scales of data collection. Soil Sci Soc Am J 67: 1093-1102.
Pachepsky YA, Timline D and Varallyay G, 1996. Artificial neural networks to estimate soil water retention from easily measurable data.  Soil Sci J 60: 727-733.
Rawls WJ and Brakensiek, DL, 1989. Estimation of soil water retention and hydraulic properties. pp. 275–300. In: Morel S, (ed.). Unsatured Flow in Hydrologic Modeling. Theory and Practice. Kluwer Academic Publishing, Dordrecht.
Salazar O, Wesstrom I and Joel A, 2008. Evaluation of Drainmod using saturated hydraulic conductivity estimated by a pedotransfer function model. Agric Water Manag 95: 1135-1143.
Schaap MG, Leij  FJ and van Genuchten MTh, 2001. Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251: 163–176.
Sepaskhah A and Bondar H, 2002. Estimation of Manning roughness coefficient for bare and vegetated furrow irrigation. Biosystems Eng. 82: 351-357.
Šimůnek J, van Genuchten MTh and Šejna M, 2005.The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Department of Environmental Sciences University of California Riverside, California.
Van Genuchten MTh and Wierenga PJ, 1976. Mass transfer studies in sorbing porous media, I. Analytical solutions. Soil Sci Soc Am J 40: 473-481.
Van Genuchten M Th, 1980. A Closed-form equation for Predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44: 892-898.
Van Genuchten MTh, Leij FJ and Yates SR, 1991. The RETC Code for Quantifying the Hydraulic functions of Unsaturated Soils Office of research and development U. S. Environmental Protection Agency ADA, Oklahoma.
Vereecken  H,  Maes  J and  Feyen  J, 1990.Estimating unsaturated hydraulic conductivity from easily measured soil properties. Soil sci J 149:1-12.
Vereecken H, Maes J, Feyen J and Darius P, 1989. Estimating the soil moisture retention characteristics from texture, bulk density and carbon content. Soil Sci J. 148: 389–403.
Wösten JHM, 1997. Pedotransfer functions to evaluate soil quality. Pp. 221-245. In: Gregorich EG, Carter MR, (Eds). Soil Quality for Crop Production and Ecosystem Health. Developments in Soil Sci, Vol. 25, Elsesevier, Amsterdam.
Wösten JHM, Lilly A, Nemes A and Le Bas C, 1999. Development and use of a data base of hydraulic properties of European soils. Geoderma 90: 169-185.
Wösten JHM, Pachepsky Ya A and Rawls WJ, 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J Hydrol 251:123-150.