بررسی آزمایشگاهی و عددی تاثیر شیب جانبی کانال اصلی بر الگوی جریان در تلاقی 90 درجه کانال‌های باز

نوع مقاله: مقاله پژوهشی

چکیده

پیدایش حفره­های فرسایشی و مناطق رسوب­گذاری ارتباط مستقیمی به هیدرولیک جریان در محدوده تلاقی کانال­ها و رودخانه­ها دارد. الگوی جریان در محل اتصال کانال­ها بسیار پیچیده و تابع متغیرهای مختلفی می­باشد. در تحقیق حاضر تاثیر شیب جانبی 45 درجه کانال اصلی بر توزیع سرعت، سطح آب و ابعاد ناحیه جداشدگی جریان در یک تلاقی با زاویه اتصال 90 درجه بررسی و با حالت شیب جانبی 90 درجه مقایسه شد. برای این منظور مولفه‌های سه بعدی جریان در آزمایشگاه اندازه‌گیری و به کمک این داده‌ها مدل عددی فلوئنت کالیبره گردید. در شبیه­سازی عددی از مدل آشفتگی   از نوع RNG استفاده شد. بررسی نتایج این تحقیق نشان می­دهد که طول و پهنای ناحیه جداشدگی در شیب جانبی 45 درجه نسبت به شیب جانبی 90 درجه در کف بستر کوچکتر و در سطح آب بزرگتر است. در شیب جانبی 45 درجه به دلیل پهنای بسیار کم ناحیه جداشدگی در نزدیکی کف، ناحیه با شتاب زیاد در پایین­دست اتصال به وجود نمی­آید و منجر به کاهش تنش برشی در این قسمت می­شود. همچنین تغییرات عمق آب در ابتدا و انتهای کانال اصلی در شیب 45 و 90 درجه به ترتیب 1/2 و 3/3 درصد نسبت به عمق آب ابتدای کانال اصلی است.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental and Numerical Investigations of the Effect of Main Channel Side Slope on Flow Pattern in Right Angle Confluence of Channels

چکیده [English]

Existence of scour holes and depositional bar is directly related to flow pattern in river confluence zone. In channel junction zone, the flow pattern is very complex as a function of different parameters. In the current research, the effects of a 45- degree side slope in main channel on velocity distribution, water surface profile and dimension of separation zone at a 90- degree junction were investigated and compared with those at a 90- degree side slope. For this purpose, the experimental components of 3 dimensional (D) flows were measured and on the basis of them numerical Fluent model was calibrated. The  Turbulence model including RNG was applied for numerical simulation. The results indicated that for a 45-degree side slope the length and width of the separation zone in comparison with a 90- degree side slope were smaller in bed and larger in water surface. For a 45- degree side slope, due to very small width of the separation zone near the bed, a region with high acceleration in downstream of junction was not formed and the rate of shear stress was reduced in this region. Also, the results showed that the water depth variations at the beginning and end of main channel for 45 and 90- degree side slopes were 2.1 and 3.3 percent, respectively.

کلیدواژه‌ها [English]

  • Channel side slope
  • Flow pattern
  • Flow separation zone
  • Turbulence model
  • River confluence
قبادیان ر، شفاعی بجستان م و موسوی جهرمی ح، 1385. بررسی آزمایشگاهی جدایی جریان در محل تلاقی رودخانه ها برای شرایط جریان زیر بحرانی. مجله تحقیقات منابع آب ایران. جلد 2، شماره 2، صفحه های 67 تا 77.       
گوهری س، 1391. بررسی عددی و آزمایشگاهی الگوی جریان در تقاطع 90 درجه کانال های مستطیلی. مجله پژوهش های حفاظت آب و خاک. جلد 19، شماره 4، صفحه های 121 تا 139.            
موسوی جهرمی ح و گودرزی زاده ر، 1390. شبیه سازی عددی الگوی جریان سه بعدی در تلاقی کانال های باز. مجله علوم و مهندسی آبیاری. جلد 34، شماره 2، صفحه های 61 تا 70.            
 
Ashmore P and Parker G, 1983. Confluence scour in coarse braided stream. Water Resour Res 19: 392-402.
Best JL and Reid I, 1984. Separation zone at open channel junctions. J Hydr Engrg 110(11): 1588-1594.
Best JL, 1988. Sediment transport and bed morphology at river channel confluence. Sedimentology 35: 481-498.
Biron P, Best JL and Roy AG,1996. Effects of bed discordance on flow dynamics at open-channel confluences. J Hydr Engrg ASCE 122(12): 676-682.
Biron PM, Ramamurthy AS and Han S, 2004. Three-dimensional numerical modeling of mixing at river confluences. J Hydr Engrg ASCE 130(3): 243-253.
Bonakdari H, Lipeme- Kouyi G and Wang X, 2011. Experiment validation of CFD modeling of multiphase flow trough open channel confluence. Pp. 2176-2183. World Environmental and Water Resources Congress May 22-26, California.
Bradbrook KF, Biron P, Lane SN,  Richards KS and Roy AG, 1998. Investigation of controls on secondary circulation in a simple confluence geometry using a three-dimensional numerical model. Hydrological Processes. 12: 1371-1396.
Bradbrook KF, Lane SN and Richards KS, 2000. Numerical simulation of the three-dimensional, timeaveraged flow structure at river channel confluences. Water Resour Res 36(9): 2731-2746.
Dordević D, 2012. Application of 3D numerical models in confluence hydrodynamics modelling. XIX International Conference on Water Resources. University of Illinois at Urbana-Champaign. USA
Gurram SK, Karki KS and Hager WH, 1997. Subcritical junction flow. J Hydr Engrg 123(5): 447 455.
Huang JC, Weber LJ and Lai YG, 2002. Three dimensional numerical study of flows in open channel junctions. J Hydr Engrg ASCE 128(3): 268-280.
Mosley MP, 1976. An experimental study of channel confluence. J Geol 84: 535-562.
Quing-Yuan Y, Xian-YeW, Wei-Zhen L and Xie-Kang W,2009. Experimental study on characteristics of separation zone in confluence zones in rivers. J Hydr Engrg ASCE 14(2): 166-171.
Shabayek S, Steffler P and Hicks F, 2002. Dynamic model for subcritical combining flows in channel junctions. J Hydr Engr ASCE 128(9): 821-828.
Shakibainia A, Tabatabai MRM and Zarrati AR, 2010. Three dimensional numerical study of flow structure in channel confluences. Can J Civ Engrg 37: 772-781.
Shumate ED, 1998. Experimental description of flow at an open-channel junction. Master thesis, Univ. of Iowa, Iowa, 150 p.
Wang X, and Cheng, L, 2000. Three- dimensional simulation of a side discharge into a cross channel flow. J Computer& Fluids 29(4): 415-433.
Weber L, Schumate E and Mawer N, 2001. Experiments on flow at a 90° open-channel junction. J Hydr Engrg, ASCE 127(5): 340-350.