هدررفت خاک در شیارها و تغییرات زمانی آن طی بارندگی در خاک‌های با بافت مختلف

نوع مقاله : مقاله پژوهشی

چکیده

فرسایش شیاری فرآیند جدا شدن و انتقال ذرات خاک توسط جریان متمرکز روان­آب بر روی دامنه­ شیب­دار است. این فرسایش نقشی مهم در هدررفت خاک در دامنه­ها دارد. ویژگی­های مختلف خاک با تأثیر بر مقاومت آن در برابر ضربه قطرات باران و تنش برشی روان­آب، بر گسترش فرسایش شیاری اثر می­گذارند. هدف از این آزمایش، بررسی فرسایش شیاری در خاک­های با بافت­ مختلف و تعیین تغییرات زمانی آن طی بارندگی بود. برای این منظور هشت خاک با بافت مختلف (رسی، لوم رسی، لوم رس شنی، لومی، لوم سیلتی، لوم شنی، شن لومی و شنی) در کرت­هایی به طول 2/1 متر و در عرض 1 متر در دامنه­ای شیب‌دار تحت باران شبیه­سازی شده مورد بررسی قرار گرفتند. هر یک از کرت­ها تحت پنج رخداد باران با شدت 60 میلی­متر در ساعت و مدت یک ساعت قرار گرفتند. مقدار فرسایش شیاری بر اساس میزان رسوب جمع شده در مخزن انتهای کرت­ها تعیین شد. نتایج نشان داد که فرسایش شیاری در شیارها به شدت تحت تأثیر بافت خاک قرار گرفت (01/0p≤). بیش­ترین و کم­ترین میزان فرسایش شیاری به ترتیب در خاک رسی (322 گرم بر متر مربع) و خاک شنی (صفر) مشاهده شد. میزان فرسایش شیاری در خاک­ها به سرعت نفوذ آب و انتقال­پذیری ذرات وابسته بود. شدت فرسایش شیاری به دلیل تخریب خاکدانه­ها و تولید روان­آب طی دوره بارندگی افزایش پیدا کرد. شدت فرسایش شیاری در ابتدای دوره بارندگی به سرعت بالا رفته و در ادامه به حد تقریباً ثابتی رسید. در خاک لومی به دلیل پایداری نسبی خاکدانه­ها، میزان تغییرات فرسایش شیاری طی بارندگی کم­تر بود.

کلیدواژه‌ها


عنوان مقاله [English]

Soil loss in Rills and Its Temporal Variation During Rainfall in Different Soil Textures

چکیده [English]

Rill erosion is the detachment of soil particles by scouring and transport of sediments by a concentrated water flow on the hillslope. It plays an important role in soil loss on the hillslope. Various soil properties affect its resistance to rain drops impact and runoff shear stress, and consequently they influence rill erosion. The study was conducted to determine rill erosion and its temporal variation during rainfall in different soil textures. Simulated rainfall experiments were performed in eight soils (clay, clay loam, sandy clay loam, loamy, silty loam, sandy loam, loamy sand and sandy) at the plots (1Í 1.2 m) installed in a hillslope. The plots were exposed to five simulated rainfalls with an intensity of 60 mm h-1 for 60-min. Rill erosion variation during each rainfall was determined by collecting sediment in a storage tank at the outlet of the plots. Results indicated that rill erosion was strongly affected by the soil texture (p ≤ 0.01). The highest and the lowest rill erosion were observed in clay (322 g m-2) and sandy soil (zero), respectively. Rill erosion rate was associated with water infiltration rate and transportability of particles in the soils. Rill erosion rate increased during the rainfall event due to disruption of soil aggregates and runoff generation. In the soils rill erosion rate rapidly increased at early times and finally reached a relatively constant level. The loamy soil showed lower variation in rill erosion rate than other soils due to greater resistance to soil erosion.

کلیدواژه‌ها [English]

  • Rill
  • Runoff
  • Shear stress
  • Soil infiltration
روحی­پور ح، فرزانه ه و اسدی ح، 1383. بررسی رابطه برخی از شاخص­های پایداری خاکدانه با عامل فرسایش­پذیری خاک با استفاده از شبیه­سازی باران. فصلنامه پژوهشی تحقیقات مرتع و بیابان ایران، جلد 11، شماره 3، صفحه­های 235 تا 254.
زارع خورمیزی م، نجفی­نژاد ع، نورا ن و ک ع، 1391. اثر شیب و خصوصیات خاک بر رواناب و هدررفت خاک با استفاده از شبیه ساز باران، حوزه آبخیز چهل چای استان گلستان. مجله پژوهش­های حفاظت آب و خاک، جلد 19، شماره 2، صفحه­های 165 تا 178.
فیض­نیا س، خواجه م و غیومیان ج، 1384. بررسى اثر عوامل فیزیکى،شیمیایى و آب و هوایى در تولید رسوب ناشى از فرسایش سطحى خاک هاى لسی. مجله پژوهش و سازندگی در منابع طبیعی، شماره 66، صفحه­های 14 تا 24.
محمودآبادی م، چرخابی اح و روحی­پور ح، 1389. ارزیابی مدل فرآیندی WEEP در برآورد فرسایش شیاری با استفاده از شبیه­سازی روان­آب. ششمین همایش ملی علوم و مهندسی آبخیزداری و چهارمین همایش ملی فرسایش و رسوب، 8 تا 9 اردیبهشت، دانشکده منابع طبیعی و علوم دریایی دانشگاه تربیت مدرس، نور.
Abu Sharar TM, Bingham FT and Rhoades JD, 1987. Salinity of soil aggregates as affected by electrolyte concentration and composition. Soil Science Society of American Journal 51: 309-314.
Adekalu KO, Olorunfemi IA and Osunbitan JA, 2007. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria. Bioresource Technology 98: 912-917.
Blake GR and Hartge KH, 1986. Bulk Density. Pp. 363–375. In: Klute A, (ed), Methods of Soil Analysis, Part 1, 2nd Edition. Agronomy Monograph, Vol. 9. American Society of Agronomy, Madison, WI.
Bower CAR, Reitemeier F and Fireman M, 1952. Exchangeable-cation analysis of saline and alkali soils. Soil Science (73): 251-261.
Carter Cade E, Greer JD, Braud HJ and Floy JM, 1974. Raindrop characteristics in southcentral United States. Trans ASAE 17: 1033-1037.
Cerdan O, Lebissonnais Y, Couturier A, Bourennane H and Souchere V, 2002. Rill erosion on cultivated hillslopes during two extreme rainfall events in Normandy, France. Soil and Tillage Research 67 (1): 99-108.
Duiker SW, Flanagan DC and Lal R, 2001. Erodibility and infiltration characteristics of five major soils of Southwest Spain. Catena 45(2): 103-121.
Emadi M, Baghernejad M and Memarian HM, 2009. Effect of land-use change on soil fertility characteristics within water-stable aggregates of two cultivated soils in northern Iran. Land Use Policy 26: 452–457.
Evans KG, Loch RJ, Silburn DM, Aspinall TO and Bell LC, 1994. Evaluation of the CREAMS model. IV Derivation of interrill erodibility parameters from laboratory rainfall simulation data and prediction of soil loss under a field rainulator using the drived parameters. Australian Journal of Soil Research 32: 867-878.
Gatto LW, 2000. Soil freeze–thaw-induced changes to a simulated rill: potential impacts on soil erosion. Geomorphology 32: 147-160.
Gee GH and Bauder JW, 1986. Particle size analysis Pp. 383-411. In: Klute A, (ed). Methods of Soil Analysis. Physical Properties Volume 9. SSSA, Madison, WI.
Hillel D, 2004. Introduction to Environmental Soil Physics. Elsevier Academic Press.
Kasman Z, shainberg I and Gal M, 1983. Effect of low levels of exchangeable Na and applied phosphogypsum on infiltration rate of various soils. Soil Science Society of American Journal 135:184-192.
Kimaro DN, Poesen J, Msanya BM and Deckers JA, 2008. Magnitude of soil erosion on the northern slope of the Uluguru Mountains, Tanzania: Interrill and rill erosion. Catena 75: 38–44.
Kravchenko A and Bullock DG, 1999. A comparative study of interpolation methods for mapping soil properties. Agronomy Journal (91): 393-400.
Lei TW, Nearing MA, Haghighi K and Bralts VF, 1998. Rill erosion and morphological evolution: A simulation model. Water Resource Research 34: 3157-3168.
Leonard J and Richard G, 2004. Estimation of runoff critical shear stress for soil erosion from soil shear strength. Catena (57): 233–249.
Li JC, Liu QQ and Zhou JF, 2003. Environmental mechanics in China. Advances in Applied Mechanics (39): 217–306.
Li M, Zhan-bin L, Dingd WL and Yaoa W, 2006. Using rare earth element tracers and neutron activation analysis to study rill erosion process. Applied Radiation and Isotopes 64: 402–408.
Liu H, Lie TW, Zhao J, Yuan CP, Fan YT and Qu LQ, 2011. Effects of rainfall intensity and antecedent soil water content on soil infiltrability under rainfall conditions using the runoff-on-out method. Journal of Hydrology 396: 24-32.