بررسی تاثیر دبی بر غلظت رسوبات معلق بالادست و پایین‌دست موانع در شرایط وجود امواج عمود بر جریان در مجاری روباز

نوع مقاله : مقاله پژوهشی

چکیده

در این تحقیق پدیده تشکیل امواج عرضی و تأثیر دبی بر غلظت رسوبات معلق در شرایط تشکیل موج­های مختلف عرضی، در یک فلوم مستطیلی بررسی شده است. نتایج این تحقیق نشان می­دهد که در حالت عدم وجود موج، غلظت رسوبات معلق در انتهای بازه موانع بیشتر از انتهای بازه بدون موانع می­باشد. امواج عرضی با کاهش انتقال رسوبات معلق در بازه موانع، باعث کاهش غلظت رسوبات معلق در پایین­دست بازه موانع نسبت به بازه بدون موانع می­گردند. به گونه‌ای که برای موج نوع 1 و 2 به طور متوسط درصد کاهش غلظت رسوبات معلق در پایین‌دست بازه موانع نسبت به بازه بدون موانع به ترتیب حدود 6/3 و 5/4 درصد بوده است، اما با افزایش دبی­ تغییر محسوسی مشاهده نشده است. همچنین نتایج نشان داده است که با افزایش دبی، دامنه امواج نوع 1 افزایش یافته است و بنابراین توانایی موج نوع 1، برای کاهش غلظت رسوبات معلق منتقل شده در بازه موانع حدود 3 درصد افزایش یافته است. درحالی­که برای موج نوع 2، با افزایش دبی، این توانایی حدود 7 درصد کاهش یافته است. بررسی­های انجام شده در بازه بدون موانع دلالت بر این امر دارد که درصد غلظت رسوبات معلق منتقل شده برای موج نوع 2 با افزایش دبی حدود 3 درصد افزایش یافته است. اما برای موج نوع 1 کاهش یافته است و رسوبات در بالادست بازه موانع ته نشین شده­اند. بنابراین توانایی موج نوع 2 نسبت به موج نوع 1 جهت انتقال رسوبات معلق در شرایط بدون موانع بیشتر است

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Discharge Effect on Suspended Sediment Concentration Upstream and Downstream of Obstacles in the Presence of Transverse Waves in Open Channels

چکیده [English]

The present study has been focused on the formation of transverse waves and the effect of discharge on suspended sediment concentration in the presence of transverse wave based on laboratory tests in a rectangular flume. The results showed that in no transverse wave condition, the concentration of suspended sediment at downstream of obstacles zone was more than that in the absence of obstacles. Transverse waves decreased the transportation of suspended sediment in obstacles zone, so that in the case of existing transverse waves, the concentration of suspended sediment at downstream of obstacles zone was less than that in no obstacles condition. The average values of reduced concentration percentages at downstream of obstacles zone relative to the condition with no obstacles zone, for wave modes 1 and 2 were about 3.6% and 4.5%, respectively. But any significant change was not seen by an increase of dischargefor wave modes 1 and 2. Also the results indicated that an increase of dischargecaused an increase in the maximum amplitude of the wave mode 1, so that the ability of the wave mode 1 for suspended sediment transportation in obstacles zone was increased about 3%, while, it was reduced for the wave mode 2 about 7%. According to the findings, increase of the discharge for the wave mode 2 caused an increase of the transported sediment concentration about 3% in no obstacles condition. But it was decreased for the wave mode 1 and the suspended sediment was deposited at upstream of the obstacles zone. Therefore, the wave mode 2 is more capable of transporting suspended sediment under condition of no obstacles zone than the wave mode 1.

کلیدواژه‌ها [English]

  • Discharge
  • Suspended sediment concentration
  • Transverse wave
  • Vortex
طاهریان ف، قمشی م و پوستی زاده ن، 1391. بررسی تأثیر قطر موانع در شرایط وجود موج عمود بر جریان ناشی از        گرداب موانع بر غلظت رسوبات معلق. نهمین سمینار بین المللی مهندسی رودخانه، بهمن ماه، دانشگاه شهید چمران.
عزیزی ر و قمشی م، 1389. رابطه فرکانس امواج عمود بر جریان در مجاری روباز با مشخصات جریان و موانع. مجله علمی- پژوهشی تحقیقات منابع آب ایران، شماره 6، جلد دوم، صفحه­های 57 تا 65.      
عطایی آشتیانی ب و بهشتی ع، 1386. مکانیک امواج آب (ترجمه). جهاد دانشگاهی واحد صنعتی امیر کبیر.                    
قمشی ع، 1388. امواج عمود بر جریان ناشی از گرداب موانع در مجاری روباز و تأثیر آن بر شکل بستر.  مجموعه مقالات هشتمین سمینار بین المللی  مهندسی رودخانه، بیست و چهارم بهمن ماه، دانشگاه شهید چمران، اهواز.
Blevins RD, 1977. Flow-induced Vibration. VNR, London, England.
Crass, 1939. About Oscillation Phenomenon on Water Surface. part 1: Flow Around Obstacle from Piles of Bridg, 209, Pitman Publishing, London.             
Fitz-hugh JS, 1973. Flow induced vibration in heat exchangers. proc. UKAEA/NPL International Symposium on vibration problems in industry, Keswick, England, 427: 1-17. 
Ghomeshi M, Mortazavi-Dorcheh SA and Falconer R, 2007. Wave formation by Vortex shedding in open channel, Journal of Applied Sciences 7 (24(:3927-3934.                                                          
Jafari A, Ghomeshi M, Bina  M and Kashefipour SM,  2010. Comparing of ten modes of oscillation occurring across the open channels. IAHR-APD Congress, 21 - 24 February, The School of Engineering, The University of Auckland, New Zealand.                      
Zima L and Ackermann SN, 2002. Wave Generation in open channels by vortex shedding from channel obstruction. Journal of Hydraulic Engineering128(6) :596-603.         
Zukauskas A, Ulinskas R  and Katinas V, 1988. Flow Dynamics and  Flow-Induced Vibrations of  Tube Banks. Experimental and Applied Heat Transfer Guide Books, Hemispher, U.S.A.