برآورد تبخیر-تعرق مرجع در سه اقلیم خشک، نیمه خشک و مرطوب با استفاده از روش‌های درخت گرادیان تقویت شده، مدل خطی تعمیم یافته و جنگل تصادفی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

2 دانشجوی دکتری، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

3 دانشیار، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

چکیده

تبخیر-تعرق یکی از مولفه‌های اصلی بیلان آب در کشاورزی و از جمله عوامل موثر و تاثیرگذار جهت برنامه-ریزی دقیق آبیاری است. لذا برآورد دقیق این پارامتر همواره مورد توجه پژوهشگران بوده است. در این راستا و در پژوهش حاضر، توانایی سه روش درخت گرادیان تقویت شده، مدل خطی تعمیم یافته و جنگل تصادفی در برآورد مقدار تبخیر-تعرق گیاه مرجع در سه اقلیم خشک (ایستگاه یزد)، نیمه خشک (ایستگاه بیرجند) و مرطوب (ایستگاه ساری) در بازه زمانی بیست و یک ساله (سال 2000 تا 2020) مورد بررسی قرار گرفت. دقت روش‌های مذکور با استفاده از سه معیار ارزیابی ضریب همبستگی، شاخص پراکندگی داده‌ها و ضریب نش- ساتکلیف مورد بررسی قرار گرفت. نتایج حاصل نشان دادند که در بهینه‌ترین حالت به ترتیب در ایستگاه‌های بیرجند، یزد و ساری مدل گرادیان تقویت شده با مقدار ضریب نش- ساتکلیف0.804، 0.826 و 0.733، مدل خطی تعمیم یافته با ضرایب 0.892، 0.931 و0.869در نهایت روش جنگل تصادفی با ضرایب 0.954، 0.956 و 0.929 عملکرد مناسبی را در برآورد میزان تبخیر-تعرق مرجع داشتند. از طرفی در تمامی روش‌ها ترکیب داده هفتم با استفاده از پارامترهای هواشناسی دما، رطوبت نسبی، ساعات آفتابی و سرعت باد در هر سه ایستگاه مورد پژوهش بهترین عملکرد را ارائه نمود؛ اما در ایستگاه بیرجند و ساری روش درخت گرادیان تقویت شده و در ایستگاه یزد مدل خطی تعمیم یافته نتایج بهتری را نسبت به دیگر مدل‌ها ارائه کردند و می‌توانند در ایستگاه‌های مورد پژوهش به عنوان روشی با دقت بالا در برآورد تبخیر-تعرق مرجع پیشنهاد گردند.

کلیدواژه‌ها


عنوان مقاله [English]

Estimating reference evapotranspiration in three arid, semi-arid and humid climates using gradient boosted tree, generalized linear model and random forest

نویسندگان [English]

  • Mojtaba Izadyar 1
  • sajjad hashemi 2
  • Saeed Samadianfard 3
1 M.Sc. Student, Dept. of Water Eng., Faculty of Agric., University of Tabriz, Iran
2 PhD. Student, Dept. of Water Sci. Eng., Faculty of Agric., University of Tabriz, Iran
3 Assoc. Prof., Dept. of Water Sci. Eng., Faculty of Agric., University of Tabriz, Iran
چکیده [English]

Background and Objectives
Evapotranspiration is one of the main components of water balance in agriculture and is one of the effective and efficient factors for accurate irrigation planning and management. Direct measurement of evapotranspiration values is time consuming and costly. On the other hand, modeling such a complex process in which many parameters interact with each other is so difficult that it is not possible to simplify the issue without multiple assumptions. Therefore, accurate estimation of this parameter has always been considered by the researchers. In the other point of view, the FAO-56 method was used as the accurate and accepted method for calculating reference evapotranspiration. One of the weaknesses of this model is its dependence on various meteorological variables. Therefore, it is necessary to use methods which need low number of meteorological variables and estimate the reference evapotranspiration with high accuracy. Additionally, due to the use of many meteorological variables and the complexity of the calculations, it is difficult to use FAO-56 method in all regions. Therefore, in the recent years, many researchers implemented machine learning methods to estimate reference evapotranspiration. Most studies in the field of reference evapotranspiration estimation use experimental models that require all the effective reference evapotranspiration parameters to provide an acceptable estimate. Hence, the aim of the current study was to present a superior model from three machine learning models, including random forest (RF), gradient boosted tree (GBT) and generalized linear model (GLM) for estimating reference evapotranspiration in three synoptic stations located at arid, semi-arid and wet climates of Iran. To the best of our knowledge, the proposed GBT and GLM methods have not been used for estimating reference evapotranspiration in the mentioned stations.
Methodology
In this research, the FAO-56 method was used to estimate the reference evapotranspiration. Also, three machine learning methods including GBT, GLM and RF were implemented to estimate the amount of reference evapotranspiration. Daily parameters of some fundamental and effective meteorological variables on evapotranspiration during 21-years statistical period (2000-2020) were collected in three stations located at different climates including Yazd station (arid), Birjand station (semi-arid) and Sari station (wet). In order to investigate the possibility of using different
 
combinations of meteorological parameters to estimate the reference evapotranspiration as accurately as possible, seven different combinations of meteorological parameters were defined. The accuracy of the utilized methods was evaluated using three criteria such as correlation coefficient, scattering index and Nash-Sutcliffe coefficient. Additionally, Taylor diagrams were implemented for evaluating the accuracy of the used methods. It should be noted that the Taylor diagram shows the three parameters of root mean square error, correlation coefficient and standard deviation simultaneously in one figure. Also, the most suitable combination of meteorological parameters that had good accuracy for estimating reference evapotranspiration, was suggested.
Findings
The results showed that in the best model at Birjand Station, and Yazd stations scenario number three by two meteorological variables of temperature and wind speed and in Sari station the scenario number two with temperature and relative humidity, the gradient boosted tree model was reinforced with Nash-Sutcliffe coefficient of 0.804, 0.826 and 0.733, with correlation coefficient of 0.997, 0.997 and 919 and scatter index of 0.249, 0.218 and 0.361 and the generalized linear model with Nash-Sutcliffe coefficient of 0.892, 0.931 and 0.869 correlation coefficient of 0.952, 0.966 and 0.933 and scatter index of 0.185, 0.137 and 0.252, respectively. Finally, the RF method with Nash-Sutcliffe coefficient of 0.954, 0.956 and 0.929, correlation coefficient of 0.978, 0.978 and 0.965 and scatter index of 0.121, 0.110 and 0.186 had good performance for estimating the reference evapotranspiration. On the other hand, in all methods, the scenario number seven using the meteorological parameters of temperature, relative humidity of sunny hours and wind speed in all three stations, presented the most accurate performance. Therefore, all three methods may be proposed as models with high degree of accuracy for estimating reference evapotranspiration.
Conclusion
Reference evapotranspiration is one of the main components of water balance in agriculture and is one of the effective and influential factors for accurate irrigation planning. Therefore, accurate estimation of this parameter has a significant role on reducing excessive water consumption. In this study, three data-driven models of RF, GBT and GLM were used in three stations of Yazd, Birjand and Sari stations. The obtained results indicated that the seventh scenario using all four meteorological parameters in all stations with the highest correlation coefficient, the lowest scatter index and the highest Nash-Sutcliffe coefficient provided most accurate estimates of the reference evapotranspiration and may be recommended for proper estimation of reference evapotranspiration.

کلیدواژه‌ها [English]

  • Arid and semi-arid climates
  • Irrigation
  • Random Forest
  • Reference evapotranspiration
Allen R, Pereira L, Raes D and Smith M, 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome.
Breiman L, 2001. Random forests. Machine Learning 45:5–32.
Chandler RE and Wheater HS, 2002. Analysis of rainfall variability using generalized linear models: A case study from the west of Ireland. Water Resources Research 38(10): 1-11
Clodoalves da Silva Júniora J, Medeirosa V, Garrozia C, Montenegrob A and Gonçalvesa GE, 2019. Random forest techniques for spatial interpolation of evapotranspiration data from Brazilian’s Northeast. Computers and Electronics in Agriculture 166:105-116.
Feng Y, Cui N, Gong D, Zhang Q and Zhao L, 2017. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agricultural Water Management 193:163-173.
Houborg R and McCabe MF, 2018. A hybrid training approach for leaf area index estimation via cubist and random forests machine-learning. ISPRS Journal of Photogrammetry and Remote Sensing 135:173–188.
Karimi S, Shiri J And Nazemi AH, 2013. Estimating daily reference crop evapotranspiration using artificial intelligences-based ANFIS and ANN techniques and empirical models. Water and Soil Science. 7:139-158 (In Persian with English abstract).
Karimi S, Shiri J and Martic P, 2020. Supplanting missing climatic inputs in classical and random forest models for estimating reference evapotranspiration in humid coastal areas of Iran. Computers and Electronics in Agriculture 176:168-171.
Mohammadrezapour A, 2017. . Monthly forecast of potential evapotranspiration models using support vector machine (SVM), genetic programming and neural - fuzzy inference system. Journal of Irrigation and Water Engineering 7:135-150 (In Persian with English abstract).
Nourani V And SayahFard M, 2013. Sensitivity analysis of ANN inputs in estimating daily evaporation. Journal of Water and Wastewater 3:88-100 (In Persian with English abstract).
RahimiKhob A and Mahmoudi A, 2011. Estimating actual evapotranspiration in a catchment using artificial neural networks with minimum climatic data. Case study: Emame representative catchment. Iran- Water Resources Research 4:51-61 (In Persian with English abstract).
Saggi MK and Jain S, 2019. Application of fuzzy-genetic and regularization random forest (FG-RRF) estimation of crop evapotranspiration (ETc) for maize and wheat crops. Agricultural Water Management 229:178-192.
Samadianfard S, Hashemi S and Izdyar M, 2019. Estimation of daily evaporation from panevaporation using machine learning methods. Iranian Journal of Irrigation and Drainage 4(12):1004-1015 (In Persian with English abstract).
SamadianFard S And Panahi S, 2019. Estimating daily reference evapotranspiration using data mining methods of support vector regression and M5 model tree. Journal of Watershed Management 8:157-167 (In Persian with English abstract).
Sepehri S, Abbasi F, Zarei G and Nakhjavani Moghaddam MM, 2021. Investigation of artificial neural network based models and sensitivity analysis for reference evapotranspiration estimating. Iranian Journal of Irrigation and Drainage 6:2089-2099 (In Persian with English abstract).
Shadkani S, Abbaspour A SamadianFard S, Hashemi S, Mosavi A and Shamshir Band S, 2020. Comparative study of multilayer perceptron-stochastic gradient descent and gradient boosted trees for predicting daily suspended sediment load: The case study of the Mississippi River, U.S. International Journal of Sediment Research 36:512-523
ZeionlabediniRezaabad M, GHazanfari S and Salajegheh M, 2020. ANFIS modeling with ICA, BBO, TLBO, and IWO optimization algorithms and sensitivity analysis for pridicting daily refrence evapotranspiration. Journal of Hydrologic Engineering 25(8):20-33.