ارزیابی ریسک آلودگی آبخوان دشت سلماس نسبت به آلاینده زمین‌زاد

نویسندگان

1 دانشجوی دکتری هیدروژئولوژی، گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز

2 دانشیار گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز

3 استاد گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز

4 استادیار گروه آب، دانشکده فنی مهندسی، دانشگاه مراغه

چکیده

آبخوان دشت سلماس یکی از آبخوان های استان آذربایجان غربی می باشد که به علت وجود چشمه آبگرم و شرایط زمین شناختی منطقه در معرض خطر آلودگی انواع آلاینده های زمین زاد از جمله آرسنیک قرار دارد. لذا ارزیابی ریسک آلودگی این آبخوان نسبت به آلاینده آرسنیک و تعیین مناطق در معرض خطر امری ضروری می باشد. در این پژوهش ریسک آلودگی آبخوان دشت سلماس با استفاده از روش OSPRC مورد بررسی قرار گرفته است. در روش OSPRC ریسک آلودگی با در نظر گرفتن منشا آلاینده، مسیر انتقال آلودگی و عواقب و نتایجی که آلودگی بر موجودات دارد؛ بررسی می شود. در این روش بعد از شناسایی منشا آلودگی، مسیر انتقال آلودگی با ارزیابی آسیب پذیری ویژه نسبت به آلاینده آرسنیک مورد بررسی قرار گرفت. به طوری که ارزیابی آسیب پذیری ویژه با استفاده از مدل شبکه عصبی GMDH و شش پارامتر روش SPECTR که شامل شیب زمین، pH، هدایت الکتریکی، هدایت هیدرولیکی، تراز سطح آب زیرزمینی و تغذیه می باشد؛ انجام گرفت. بعد از اجرای مدل شبکه عصبی GMDH، مقادیر RMSE و r برای مرحله آزمایش به ترتیب 0.036 و 0.902 بدست آمده است. نتایج حاصل از تهیه نقشه ریسک آلودگی که از حاصلضرب آسیب پذیری ویژه در سرعت جریان آب زیرزمینی بدست آمده نشان داد که ریسک آلودگی نسبت به آلاینده آرسنیک در قسمت های غربی و بخش هایی از جنوب غربی بیشتر از بقیه قسمت های آبخوان می باشد ولی به طور کلی ریسک آلودگی آبخوان سلماس نسبت به آلاینده آرسنیک خیلی کم می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of Contamination Risk in Salmas Aquifer for Contaminant from Geogenic Origin

نویسندگان [English]

  • Maryam Gharekhani 1
  • Ata Allah Nadiri 2
  • Asghar Asghari Moghaddam 3
  • Sina Sadeghfam 4
1 Ph.D Candidate of Hydrogeology, Dept. of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Iran
2 Assoc. Prof., Dept. of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Iran
3 Prof., Dept. of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Iran
4 Assis. Prof., Dept. of Civil Engineering, Faculty of Engineering, University of Merage, Iran
چکیده [English]

Salmas plain aquifer is one of the aquifers in West Azerbaijan province, which is exposing to contamination risk of various contaminants from geogenic origin such as arsenic. This is due to hot springs and geological conditions of the area. Therefore, it is necessary to assess the contamination risk to arsenic contaminant and identification of high-risk areas in this aquifer. In this study, the contamination risk of Salmas aquifer was investigated using OSPRC method. In OSPRC method, the contamination risk investigated by considering the origin, source, pathways, receptor and consequence. In this method, the source of contamination was identified then specific vulnerability to arsenic contaminants as pathway was investigated using GMDH neural network model and six parameters of SPECTR method. The parameters of SPECTR method are slope, pH, electrical conductivity, hydraulic conductivity, water table and recharge. The testing RMSE and r values of the GMDH neural network model were 0.036 and 0.902, respectively. The contamination risk map was obtained by multiplying the specific vulnerability in the groundwater velocity. This map showed that the risk of contamination to arsenic contaminant is higher in the western and southwestern parts of the aquifer than the other parts of the aquifer. In general, the contamination risk of Salmas aquifer to the arsenic contaminants is very low.

کلیدواژه‌ها [English]

  • Arsenic
  • Contamination risk
  • GMDH-neural network model
  • OSPRC method
  • Salmas plain aquifer
Anonymous, 2011. Guidelines for Drinking-water Quality. Fourth edition, Recommendations, WHO Press World Health Organization, Geneva.
Asghari Moghaddam A, Gharekhani M, Nadiri AA, Khord M and Fijani E, 2017. Evaluation of intrinsic vulnerability of Ardabil plain using DRASTIC, SINTACS and SI methods. Geography and Planning 21 (61): 57-74. (In Persian with English abstract)
Baalousha HM, 2011. Mapping groundwater contamination risk using GIS and groundwater modelling, A case study from the Gaza Strip, Palestine. Arabian Journal of Geosciences 4: 483–94.
Gemitzi A, Petalas C, Tsihrintzis VA and Pisinaras V, 2006. Assessment of groundwater vulnerability to pollution: a combination of GIS, fuzzy logic and decision making techniques. Environmental Geology 49: 653–73.
Gharekhani M, Nadiri AA, Asghari Moghaddam A and Sadeghi Aghdam F, 2015. Optimization of DRASTIC model by support vector machine and artificial neural network for evaluating of intrinsic vulnerability of Ardabil plain aquifer. Iranian journal of Ecohydrology 2 (3): 311-324. (In Persian with English abstract)
Huan H, Zhang B-T, Kong H, Li M, Wang W, Xi B and Wang G, 2018. Comprehensive assessment of groundwater pollution risk based on HVF model: A case study in Jilin city of northeast China. Science of the Total Environment 628–629: 1518–1530.
Ivakhneko AG, 1971. Polynomial theory of complex systems. IEE Trans. On systems. Man and Cybermetics SMC 1: 364-378.
Nadiri AA, Gharekhani M, Khatibi R and Asghari Moghaddam A, 2017b. Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models. Environmental Science and Pollution Research 24 (9): 8562-8577.
Nadiri AA, Gharekhani M, Khatibi R, Sadeghfam S and Asghari Moghaddam A, 2017a. Groundwater vulnerability indices conditioned by supervised intelligence committee machine (SICM). Science of the Total Environment 574: 691–706.
Nadiri AASadeghfam SGharekhani MKhatibi R and Akbari E, 2018. Introducing the risk aggregation problem to aquifers exposed to impacts of anthropogenic and geogenic origins on a modular basis using 'risk cells'. Journal of Environmental Management 217: 654–667.
Neshat A, Pradhan B and Javadi S, 2015. Risk assessment of groundwater pollution using Monte Carlo approach in an agricultural region: An example from Kerman plain, Iran. Journal of Computers, Environment and Urban Systems 50: 66–73.
Nobre RCM, Rotunno OC, Mansur WJ, Nobre MMM and Cosenza CAN, 2007. Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. Journal of Contaminant Hydrology. 94: 277–92.
Nriagu JO and Pacyna JM, 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature Journal 333: 134–1
Pershagen G, 1981. The carcinogenicity of arsenic. Environmental Health Perspectives 40: 93-100.
Sadeghfam S, Hassanzadeh Y, Khatibi R, Moazamnia M and Nadiri AA, 2018. Introducing a risk aggregation rationale for mapping risks to aquifers from point- and diffuse-sources–proof-of-concept using contamination data from industrial lagoons. Journal of Environmental Impact Assessment Review 72: 88–98.
Saidi S, Bouri S, Ben Dhia H and Anselme B, 2011. Assessment of groundwater risk using intrinsic vulnerability and hazard mapping:application to Souassi aquifer, Tunisian Sahel. Agricultural Water Management 98: 1671–82.
Sajedi-Hosseini F, Malekian A, Choubin B, Rahmati O, Cipullo S, Coulon F and Pradhan B, 2018. A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Science of the Total Environment 644: 954–962.
Scanlon B, Healy R and Cook P, 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrology Journal (10) 1: 18-39.
Todd DK and Mays LW, 2005. Groundwater Hydrology. Third Ed., John Wiley & Sons Inc., USA.
Wang J, He J and Chen H, 2012. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing plain, China. Science of the Total Environment 432: 216-226.
Wilson J, Schreier H and Brown S, 2008. Arsenic in groundwater in the Surrey-Langley Area. Fraser Health Authority, Abbotsford.
Zwahlen F, 2004. Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final report COST action 620: European Commission, Brussels.