اثر تغییراقلیم بر عملکرد گندم و تحلیل ریسک ناشی از آن (مطالعۀ موردی: منطقۀ روددشت اصفهان)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

2 گروه آبیاری و آبادانی دانشگاه تهران

3 گروه مهندسی آب دانشگاه ارومیه

4 دانشگاه آزاد اسلامی شاخه کرمانشاه

چکیده

هرگونه تغییر در میزان غلظت گازهای گلخانهای در اتمسفر زمین، باعث برهم خوردن تعادل بین اجزاء سیستم اقلیم کره
زمین میگردد. اما اینکه در آینده چه مقدار از این گازها توسط جوامع بشری وارد اتمسفر زمین میشود، معین و قطعی
نیست و تحت سناریوهای مختلفی ارائه شده است. در این مطالعه، سری زمانی روزانه پارامترهای اقلیمی منطقۀ
538 ppm) B 3 درجه) و 1 / و افزایش دما 8 ،CO 857 غلظت 2 ppm) A روددشت اصفهان تحت سناریوهای تغییر اقلیم 2
و با بکارگیری مولد HADCM3 (GCM) و افزایش دما 2 درجه) با استفاده از نتایج مدل گردش عمومی CO غلظت 2
برای دورة 2011 تا 2030 میلادی تولید گردید. نتایج نشان داد که در منطقۀ مورد مطالعه، میانگین LARS-WG اقلیم
بارش سالانه، مجموع بارش سالانه در طول دورة رشد گیاه و متوسط دمای روزانه تحت هر دو سناریوی تغییر اقلیم
مورد ارزیابی قرار SWAP افزایش خواهند یافت. اثر تغییر اقلیم بر عملکرد محصول گندم فاریاب با استفاده از مدل
گرفت. تحلیل مقدار عملکرد نسبی و مطلق گندم تحت سناریوهای مختلف اقلیمی نشان داد که متوسط عملکرد نسبی
2 درصد و / 1 و 1 / 1961 )، به ترتیب 49 - نسبت به سناریوی مبنا ( 1990 B و 1 A محصول تحت دو سناریوی تغییر اقلیم 2
17 درصد کاهش خواهند یافت. با تحلیل ریسک کاهش محصول نسبی و / 4 و 9 / متوسط عملکرد دانۀ گندم به ترتیب 19
احتمال (ریسک) کاهش محصول نسبت به ،B واقعی گندم مشخصشد که در سناریوهای تغییر اقلیم، به ویژه سناریوی 1
مقدار میانگین دورة مبنا افزایش مییابد. میزان ریسک حداقل 500 کیلوگرم در هکتار کاهش محصول گندم تحت
نسبت به متوسط سناریوی مبنا به ترتیب در حدود 15 ،7 و 55 درصد برآورد گردید. B و 1 A سناریوهای مبنا، 2

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Climate Change Impact onWheat Yield and Analysis of the Related Risks:(Case Study: Esfahan Ruddasht Region)

نویسندگان [English]

  • B Ababaei 1
  • T Sohrabi 2
  • F Mirzaei 2
  • V Rezaverdinejad 3
  • B Karimi 4
چکیده [English]

Change in atmospheric greenhouse gases Leads to imbalance between different elements of the
earth climate. However, the amount of the gases that will be disposed in to the atmosphere in the
future by human activity is uncertain and may be presented under different scenarios. In this study,
the daily time series of climatic parameters for Ruddasht region (located in Esfahan Province, Iran)
under A2 (857 ppm CO2., 308°C temperature rise) and B1 (538 ppm CO2., 2°C temperature rise)
climate change scenarios were generated for the period 2011-2030 using HADCM3 Global
Circulation Model (GCM) and LARS-WG weather generator. The results showed that, in the region
of study, the amount of mean total yearly precipitation, mean total effective precipitation and mean
daily temperature would increase under climate change scenarios. The effects of climate change on
irrigated wheat yield were analyzed using SWAP model. The analysis of relative and actual yield of
wheat under different climatic scenarios showed that the mean relative yield under scenarios A2 and
B1 would decrease by 1.49 and 2.1 percent and the mean actual yield would decrease by 4.19 and
17.9 percent, respectively. Analyzing related risks of yield decrease demonstrated that the risk of
yield reduction would increase in climate change scenarios. The risk of 500 kg.ha-1 wheat yield
reduction in comparison with base scenario (BS) mean value were estimated 7, 15 and 55 percent
for BS, A2 and B1 scenarios, respectively.

کلیدواژه‌ها [English]

  • Climate Change
  • Esfahan Ruddasht
  • HadCM3
  • Lars-WG
  • SWAP
  • Wheat
مساح بوانی ع، 1385 . ارزیابی ریسک تغیر اقلیم و تاثیر آن بر منابع آب: مطالعه موردی حوضه زاینده رود اصفهان.
پایان نامه دکترای مدیریت منابع آب، دانشکدة کشاورزی، دانشگاه تربیت مدرس.
Ababaei B, Sohrabi TM, Mirzaei F and Karimi B, 2010. Evaluation of a stochastic weather
generator in different climates. Computer and Information Science 3(3): 217-229.
Abraha MG and Savage MJ, 2006. Potential impacts of climate change on the grain yield of maize
for the midlands of KwaZulu-Natal, South Africa. Agriculture, Ecosystems and Environment
115: 150–160.
Allen RG, Pereira LS, Raes D and Smith M, 1998. Crop evapotranspiration: Guidelines for
computing crop water requirements. Irr and Drain Paper 56. UN-FAO, Rome, Italy.
Anynomous, 1999. Guidelines on the use of scenario data for climate impact and adaptation
assessment In: Carter TR, Hulme M and Lal M, (eds.), Version 1. Intergovernmental Panel on
Climate Change, Task Group on Scenarios for Climate ImpactAssessment (IPCC-TGCIA).
Bastiaansesen WGM, Huygen J, Schakel JK and Van Den Broek BJ, 1996. Modeling the soilwater-
crop-atmosphere system to improve agricultural water management in arid zone
(SWATRE), In BJ Van Den Broek (ed.), Pp. 13-27. Dutch experiments in irrigation water
management modeling, Report 123, Winand Starig Center, Wagenningen.
Droogers P, Akbari M, Torabi M and Pazira E, 2000. Exploring field scale salinity using simulation
modeling, Example for Rudasht area, Esfahan Province, Iran, IAEIR-IWMI Research Report 2.
Foulkes MJ, Scott RK, Sylvester-Bradley R, 2001. The ability of wheat cultivars to withstand
drought in UK conditions: resource capture. Journal of Agricultural Science. 137: 1–16.
Hargreaves GH and Samani ZA, 1982. Estimating potential evapotranspiration. Journal of Irrigation
and Drainage Engineering ASCE 108 (3): 223–230.
20 شماره 3 / سال 1389 / 148 آبابایی، سهرابی و ... مجله دانش آب و خاک/ جلد 1
Homaee M, Dirksen C, and Feddes RA, 2002. Simulation of root water uptake, I. Non-uniforme
transient salinity using different macroscopic reduction function, Agricultural Water Manag 57:
89-109.
Hussain SS and Mudasser M, 2007. Prospects for wheat production under changing climate in
mountain areas of Pakistan – An econometric analysis. Agricultural Systems 94: 494–501.
IPCC 2007a. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of
Working Group II to the Fourth Assessment Report of the IPCC. Parry M, Canziani O,
Palutikof J, van der Linden P, and Hanson C, Cambridge University Press, Cambridge.
Krishnan P, Swain DK, Chandra Bhaskar B, Nayak SK and Dash RN, 2007. Impact of elevated
CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation
studies. Agriculture, Ecosystems and Environment 122: 233–242.
Kroes JG, Van Dam JC, Groenendijk P, Hendriks RFA and Jacobs CMJ, 2008. Reference Manual
SWAP version 3.2, Alterra Green World Research, Wagenningen, Report1649.
Lobell DB, Field CB, Cahill KN and Bonfils C, 2006. Impacts of future climate change on
California perennial crop yields: Model projections with climate and crop uncertainties.
Agricultural and Forest Meteorology 141: 208–218.
Luo Q, Bellotti W, Williams M and Bryan B, 2005. Potential impact of climate change on wheat
yield in South Australia. Agricultural and Forest Meteorology 132: 273–285.
Mavromatis T and Hansen JW, 2001. Interannual variability characteristics and simulated crop
response of four stochastic weather generators. Agricultural and Forest Meteorology 109: 283–
296.
Mavromatis T and Jones PD, 1998. Comparison of climate scenario construction methodologies for
impact assessment studies. Agricultural and Forest Meteorology 91: 51–67.
Mearns LO, Rosenzweig C and Goldberg R, 1996. The effect of changes in daily and interannual
climatic variability on ceres-wheat: a sensitivity study. Climate Change 32: 257–292.
Mearns LO, Rosenzweig C, Goldberg R, 1997. Mean and variance change in climate scenarios:
Methods, agricultural applications, and measures of uncertainty. Climate Change 35: 367–396.
Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung
TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper Pitcher WH, Price L, Raihi
K, Roehrl A, Rogner H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen
S, Victor N. and Dadi Z, 2000. Emissions Scenarios. A Special Report of Working Group III of
the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK
and New York, USA.
Pearson CJ, Bucknell D and Laughlin CP, 2008. Modelling crop productivity and variability for
policy and impacts of climate change in eastern Canada. Environmental Modelling and
Software 23: 1345–1355.
اثر تغییر اقلیم بر عملکرد گندم و تحلیل ریسک ناشی از آن (مطالعۀ موردی: منطقۀ روددشت اصفهان) 149
Philips DL, Lee JJ and Dodson RF, 1996. Sensitivity of the US corn belt to climate change and
elevated CO2: I. Corn and Soybean yields. Agricultural Systems 52: 481-502.
Porter JR and Semenov MA, 1999. Climatic variability and modelling of crop yield in Europe.
Nature 400: 724.
Racsko P, Szeidl L and Semenov MA, 1991. A serial approach to local stochastic weather models.
Ecological Modelling 57: 27-41.
Richarsdon CW and Wright DA, 1984. WGEN: a model for generating daily weather variables.
U.S. Dep. of Agric, Agricultural Research Service ARS-8.
Richter GM and Semenov MA, 2005. Modelling impacts of climate change on wheat yields in
England and Wales - assessing drought risks. Agricultural Systems 84: 77–97.
Semenov MA and Barrow EM, 1997. Use of a stochastic weather generator in the development of
climate change scenarios. Climatic Change 35: 397-414.
Semenov MA and Brooks RJ, 1999. Spatial interpolation of the LARS-WG stochastic weather
generator in Great Britain. Climate Research 11: 137-148.
Semenov MA and Porter JR, 1994. The implications and importance of non-linear responses in
modelling of growth and development of wheat. In: Grasman, J, van Straten, G. (Eds.),
Predictability and Nonlinear Modelling in Natural Sciences and Economics. Wageningen.
Semenov MA, Brooks RJ, Barrow EM and Richardson CW, 1998. Comparison of the WGEN and
LARS-WG stochastic weather generators in diverse climates. Climate Research 10: 95–107.
Semenov MA. and Stratonovitch P. 2009. The use of multi-model ensembles from global climate
models for impact assessments of climate change. Climate Research 41: 1-14.
Stockle CO, Steduto P and Allen RG, 1998. Estimating daily and daytime mean VPD from daily
maximum VPD. 5th Congress of the European Society of Agronomy, Nitra, the Slovak
Republic.
Stockle CO, Donatelli M, Nelson R, 2003. CropSyst: a cropping systems simulation model.
European Journal of Agronomy 18(3-4): 289-307.
Van Genuchten MTh, 1980. A closed form equation for predicting the hydraulic conductivity of
unsaturated soils. Soil Science Society of America Journal 44: 892-898.
Van Ittersum MK, Howden SM and Asseng S, 2003. Sensitivity of productivity and deep drainage
of wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and
precipitation. Agriculture, Ecosystems and Environment 97: 255–273.
Vazifedoust M, Van Dam JC, Feddes RA and Feizi M, 2008. Increasing water productivity of
irrigated crops under limited water supply at field scale. Agricultural Water Management 95:
89-102.
Wilby RL and Wigley TML, 2000. Down-scaling general circulation issues in climate prediction.
In: Sivakumar, M.V.K. (Ed.), Pp.39–68, Climate Prediction and Agriculture, Proceedings of the
20 شماره 3 / سال 1389 / 150 آبابایی، سهرابی و ... مجله دانش آب و خاک/ جلد 1
START/WMO International Workshop, Geneva, Switzerland, September 27–29, 1999.
International START Secretariat, Washington, DC, USA.
Wolf J, Evans LG, Semenov, MA, Eckersten H and Iglesias A, 1996. Comparison of wheat
simulation models under climate change. 1. Model calibration and sensitivity analyses. Climate
Research 7: 253–270.
Zhang XC and Nearing MA, 2005. Impact of climate change on soil erosion, runoff, and wheat
productivity in central Oklahoma. Catena 61: 185–195.