ارزیابی عملکرد روش های برآورد ضرایب معادله نفوذ کوستیاکف در آبیاری جویچه ای با جریان موجی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه زنجان

2 استادیار، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه زنجان

3 دانشیار، گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

چکیده

به منظور افزایش راندمان کاربرد و یکنواختی توزیع آب در روش‌های آبیاری سطحی، تکنیک‌هایی نظیر کاربرد جریان موجی توسعه داده شده است. یکی از ملزومات طراحی مناسب و کارآمد آبیاری موجی، تعیین دقیق پارامترهای معادله نفوذ آب در خاک می‌باشد. هدف از تحقیق حاضر بررسی عملکرد سه روش دو نقطه‌ای الیوت و واکر، یک نقطه‌ای شپارد و روش رگرسیون غیرخطی در تخمین نفوذ آب در آبیاری جویچه‌ای با جریان موجی می‌باشد. به همین منظور از داده‌های ارزیابی مزرعه‌ای سه جویچه آزمایشی شامل دو جویچه با جریان موجی و یک جویچه با جریان پیوسته استفاده شد. طول جویچه‌ها 150 متر، فواصل آن‌ها 75/0 متر و بافت خاک (لوم رسی) بود. نتایج نشان داد که روش یک نقطه‌ای ضعیف‌ترین عملکرد را در برآورد نفوذ در جویچه‌های با جریان موجی و همچنین جریان پیوسته داشت. از سوی دیگر نتایج دو روش رگرسیون غیر خطی و دونقطه‌ای قابل قبول و نزدیک به هم بدست آمد. مقادیر شاخص جذر میانگین مربعات خطا روش‌های یک نقطه‌ای، دونقطه‌ای و رگرسیون غیرخطی در پیش‌بینی زمان پیشروی جویچه‌های با جریان موجی به ترتیب ۸۵/۱۰، 52/۲ و 46/۲ دقیقه و در جریان پیوسته به ترتیب ۷۸/۸، ۵۷/۶ و ۷۷/۴ دقیقه بدست آمد. همچنین مقادیر میانگین خطای نسبی روش‌های مذکور در برآورد حجم آب نفوذ یافته در جویچه‌‌های با جریان موجی به ترتیب12/42، 51/3 و 79/4 درصد و در جریان پیوسته به ترتیب 70/7، 33/6 و 53/2 درصد برآورد شد. نتایج نشان داد، روش رگرسیون غیرخطی عملکرد بهتری در برآورد نفوذ در آبیاری جویچه‌ای با جریان موجی و پیوسته داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the Performance of Methods for Estimating the Coefficients of Kostiakov Infiltration Equation in Furrow Irrigation with Surge Flow

نویسندگان [English]

  • Mohammad Mahdi Jafari 1
  • hassan ojaghlu 2
  • Hamed Ebrahimian 3
1 MSc. Student, Dept. of Water Sciences and Engineering, Faculty of Agriculture, University of Zanjan
2 Assist. Prof., Dept. of Water Sciences and Engineering, Faculty of Agriculture, University of Zanjan
3 Assoc. Prof., Dept. of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran
چکیده [English]

In order to increase the application efficiency and distribution uniformity in surface irrigation methods,some techniques such as the application of surge flow have been developed.One of the requirements for proper and efficient design of surge irrigation is to accurately determine the infiltration equation parameters.The purpose of the present study was to investigate the performance of three methods:Elliott and Walker two-point, Shepard one-point and nonlinear regression methods in estimating water infiltration in furrow irrigation with surge flow.For this purpose,the field evaluation data of three experimental furrow included two furrows under surge flow and a furrow with continuous flow were used.The length and spacing of the furrows was 150m and 0.75m,respectively.The soil texture was clay loam.The results showed that the one-point method had the lowest performance in estimating the infiltration in furrow with surge and continuous flow.On the other hand,the results of nonlinear regression and two point methods were acceptable and close to each other.The mean values of root mean square error index for the one-point, two-point and nonlinear regression methods in estimating the advance times under surge flow were 10.85, 2.52 and 2.46 min,respectively, and in furrows under continuous flow were 8.87, 6.57 and 4.77 min, respectively.Also, the values of mean relative error in estimating the volume of infiltrated water in the furrows with surge flow were 42.12, 3.51 and 4.79, respectively,and for continuous flow were 7.70, 6.33 and 2.53, respectively.Results indicated that, the nonlinear regression method performed better in estimating the infiltration of furrow irrigation under surge and continuous flows.

کلیدواژه‌ها [English]

  • Furrow irrigation
  • Infiltration
  • Simulation
  • Surge flow
  • WinSRFR
Ahadi MS, Eshraghi H, Habibi Nokhandan M, Shahni Danesh M and Fahmi H, 2016. Climate change impact assessment on water resources in Iran: applying dynamic and statistical downscaling methods. Journal of Water and Climate Change 7(3): 551-577.
Ashofteh P and Massah AR, 2009. Uncertainty of climate change impact on the flood regime. Case study: Aidoghmoush basin, East Azerbaijan, Iran. Iran-Water Resources Research 5(2): 27-39. (In Persian with English abstract)
Chang H and Jung IW, 2010. Spatial and temporal changes in runoff caused by climate change in a complex large river basin in Oregon. Journal of Hydrology 388: 186-207.
Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, Golaz J, Ginoux P, Lin SJ, Schwarzkopf MD, Austin J, Alaka G, Cooke WF, Delworth TL, Freidenreich SM, Gordon CT, Griffies SM, Held IM, Hurlin WJ, Klein SA, Knutson TR, Langenhorst AR, Lee H, Lin Y, Magi BI, Malyshev SL, Milly PCD, Naik V, Nath MJ, Pincus R, Ploshay JJ, Ramaswamy V, Seman CJ, Shevliakova E, Sirutis JJ, Stern WF, Stouffer RJ, Wilson RJ, Winton M, Wittenberg AT and Zeng F, 2011. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. Journal of Climate 24: 3484-3519.
Dufresne JL, Foujols MA, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel JP, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix JY, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre MP, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N and Vuichard N, 2013. Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Climate Dynamics 40(9-10): 2123-2165.
Dunne JP, John JG, Adcroft AJ, Griffies SM, Hallberg RW, Shevliakova E, Stouffer RJ, Cooke W, Dunne KA and Harrison MJ, 2012. GFDLs ESM2 global coupled climate-carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. Journal of Climate 25: 6646-6665.
Fan J, Hu J, Zhang X, Kong L, Li F and Mi Z, 2020. Impacts of climate change on hydropower generation in China. Mathematics and Computers in Simulation 167: 4-18.
Franklin CN, Sun Z, Bi D, Dix M, Yan H and Bodas-Salcedo A, 2013. Evaluation of clouds in access using the satellite simulator package cosp: global, seasonal, and regional cloud properties. Journal of Geophysical Research: Atmospheres 118: 732-748.
Gelete G, Gokcekus H and Gichamo T, 2020. Impact of climate change on the hydrology of Blue Nile basin, Ethiopia: A review. Journal of Water and Climate Change 11(4): 1539–1550.
Ghandhari GH, Soltani J and Hamidian Pour M, 2015. Evaluation of optimal water allocation scenarios for Bar river of Neishabour using WEAP model under A2 climatic changes scenario. Journal of Water and Soil 29(5): 1158-1172. (In Persian with English abstract)
Ghosh S and Dutta S, 2012. Impact of climate change on flood characteristics in Brahmaputra Basin using a macro-scale distributed hydrological model. Journal of Earth System Science 121: 637-657.
Gohari A, Bozorgi A, Madani K, Elledge J and Berndtsson R, 2014. Adaptation of surface water supply to climate change in central Iran. Journal of Water and Climate Change 5: 391–407.
Hadizadeh M, Shahidi A and Farzaneh, MR, 2011. Uncertainty analysis of precipitation under climate change (Case study: Birjand Synoptic Station). 4th Conference of Water Resources Management of Iran. 3 May, Tehran, Iran.
Heydari Tasheh Kabood S, Hosseini SA and Heydari Tasheh Kabood A, 2020. Investigating the effects of climate change on stream flows of Urmia Lake basin in Iran. Modeling Earth Systems and Environment 6: 329-339.
Hwang CL and Yoon K, 1981. Multiple Attribute Decision Making: Methods and Applications. New York: Springer-Verlag.
Iversen T, Bentsen M, Bethke I, Debernard JB, Kirkevag A, Seland Ø, Drange H, Kristjansson JE, Medhaug I, Sand M and Seierstad IA, 2013. The Norwegian Earth System Model, NorESM1-M- Part 2: Climate response and scenario projections. Geoscientific Model Development 6: 389-415.
Jakeman AJ and Hornberger GM, 1993. How much complexity is warranted in a rainfall-runoff model. Water Resources Research 29(8): 2637-2649.
Kamal A and Massah Bavani A, 2010. Climate change and variability impact in basin’s runoff with interference of two hydrology models uncertainty. Journal of Water and Soil 24(5): 920-931. (In Persian with English abstract)
Kult J, Choi W and Choi J, 2014. Sensitivity of the snowmelt runoff model to snow covered area and temperature inputs. Applied Geography 55: 30–38.
Li F, Xu Z, Liu W and Zh Y, 2014. The impact of climate change on runoff in the Yarlung Tsangpo river basin in the Tibetan Plateau. Stochastic Environmental Research and Assessment 28: 517-526.
Mansouri A, Aminnejad B and Ahmadi H, 2018. Investigating the effect of climate change on inflow runoff into the Karun-4 Dam based on IPCC's fourth and fifth report. Journal of Water and Soil Science 22(2): 345-359. (In Persian with English abstract)
Massah Bavani A and Ashofteh P, 2008. Investigating the importance of climate change in the world and its impact on various systems. Technical Workshop on the Effects of Climate Change on Water Resources Management. 13 Feb. Tehran, Iran. (In Persian with English abstract)
Massah Bavani AR, 2006. Risk Assessment of Climate Change and Its Impact on Water Resources. A Case Study in Zayandeh-Rud Basin. PhD. Thesis. Faculty of Agriculture, Tarbait Modares University. (In Persian with English abstract)
Meehl GA, Washington WM, Arblaster JM, Hu A, Teng H, Tebaldi C, Sanderson BN, Lamarque JF, Conley A, Strand WG and White JB III 2012. Climate system response to external forcings and climate change projections in CCSM4. Journal of Climate 25: 3661-3683.
Raff DA, Sutley D, Pruitt T and Brekke LD, 2010. Flood frequency in a changing climate. Projections approach and diagnostics. 2nd Joint Federal Interagency Conference. 27 June- 1 July. Las Vegas, USA.
Rončák P, Hlavčová K, Kohnová S and Szolgay J, 2019. Impacts of future climate change on runoff in selected catchments of Slovakia. Pp.279- 292. In: Leal Filho W, Trbic G, Filipovic D, (eds.) Climate Change Adaptation in Eastern Europe. Climate Change Management. Springer-Verlag.
Rotstayn LD, Jeffrey SJ, Collier MA, Dravitzki SM, Hirst AC, Syktus JI and Wong KK, 2012. Aerosol-and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region. a study using single-forcing climate simulations. Atmospheric Chemistry and Physics 12: 6377-6404.
Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T and Roeckner E, 2013. Atmospheric component of the MPI-M earth system model: ECHAM6. Journal of Advances in Modeling Earth Systems 5(2): 146-172.
Teng J, Vaze J, Chiew FHS, Wangand B and Perraud JM, 2012. Estimating the relative uncertainties sourced from GCMs and hydrological models in modeling climate change impact on runoff. Journal of Hydrometeorology 13: 122-139.
Thrasher B and Nemani R, 2012. NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP). Intent of This Document and POC. Earth Engine Data Catalog.
Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L and Chauvin F, 2013. The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dynamics 40: 2091-2121.