بررسی تاثیر جذب یونی بر انتقال جرم در محیط های متخلخل اشباع

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

2 گروه مهندسی آب دانشگاه تبریز

چکیده

استفاده از مدلهای ریاضی به عنوان ابزاری کارآمد در مطالعات و مدیریت انتقال جرم در محیطهای متخلخل رایج
میباشد. مدل حاضر با بهرهگیری از رابطهی حاکم بر انتقال دو بعدی جرم در محیط متخلخل، تاثیر جذب یونی را بر
انتقال و توزیع دوبعدی جرم در یک محیط متخلخل اشباع و نیمه نامتناهی بیان می کند. این مدل با دو نوع شرط مرزی
نوع اول (شرط دیریکله) و نوع سوم (شرط کوشی) بصورت تحلیلی حل شدهاست. درانتقال جرم به صورت انتشار،
شرط مرزی نوع سوم غلظت جرم را در مرز یا سطح خاک بیشتر از شرط مرزی نوع اول نشان می دهد و در انتقال جرم
به صورت انتقال تودهای – پخش، منحنیهای توزیع غلظت جرم حاصل از شرایط مرزی نوع اول و نوع سوم به دلیل
غالب بودن انتقال تودهای تقریباً یکسان میباشد. تاثیر جذب یونی بر روی ذرات جامد محیط به وسیلهءعامل تاخیر در
مدل ارزیابی شده است. عامل تاخیر بزرگتر از واحد، باعث تاخیر در انتقال، توزیع و پخش جرم در محیط متخلخل
میشود . تاثیر جذب یونی بر توزیع غلظت جرم مستقل از نوع شرط مرزی و وابسته به حالت های انتقال و پخش جرم
در محیط متخلخل میباشد به طوری که میزان این تاثیر در انتقال جرم بصورت انتقال تودهای – پخش در مقایسه با
حالت انتشار به مراتب بیشتر میباشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Ion Adsorption on Solute Transport in Saturated Porous Media

نویسندگان [English]

  • Sh Shahmohammadi Kalalagh 1
  • AH Nazemi 2
چکیده [English]

Use of mathematical models as efficient tools in solute transport studies and management in porous
media is usual. The present model by making use of the governing equation for two - dimensional
solute transport in a porous medium expresses the ion adsorption effect on solute transport in a
saturated semi infinite porous medium.This model has been solved analyticaly under the first type
(Dirichlet condition) and the third type (Cauchy condition) boundary conditions. In solute transport
by diffusion, the third type boundary condition shows the solute concentration at the boundary or on
the soil surface more than that of the first boundary condition. In advection – dispersion solute
transport, the solute concentration distribution curves resulting from the first and third boundary
conditions because of advection predomination are approximately identical. The effect of ion
adsorption on the medium,s solid matrix is evaluated by retardation factor in the model. The
retardation factor greater than one causes retardation in solute transport, distribution and dispersion
in the medium. The effect of ion adsorption on solute concentration distribution is independent of
the selected boundary condition and depends on the modes of solute transport and dispersion in the
medium, so as the rate of this effect in advection – dispersion solute transport is more than in
diffusion transport.

کلیدواژه‌ها [English]

  • Advection-dispersion transport
  • Cauchy condition
  • Dirichlet condition
  • Porous medium
  • Retardation factor
  • Solute transport
بدو ک، ١٣٨٠ . مطالعه آزمایشگاهی و نظری انتقال آلودگی به روش پخش و جابجایی با حرکت و پخش در خاکهای
دانهای و ریز. مجله دانشکده فنی، دانشگاه تبریز.
زارع ابیانه ح، ١٣٨٥ . "دینامیک انتقال جرم در خاکهای مطبق و غیر مطبق. پایان نامه دکتری، دانشکده کشاورزی،
دانشگاه تبریز.
شاه محمدی کلالق ش، ١٣٨٢ . "بررسی تحلیلی انتقال جرم در محیطهای متخلخل." پایاننامه کارشناسی ارشد. دانشکده
کشاورزی. دانشگاه تبریز.
شمس ب و رضوانی م، ١٣٧٠ . "ریاضیات پیشرفته." ، انتشارات منصوری.
Leij FJ and Dane JH ,1990. Analytical solution of one-dimensional advection equation and two or
three dimensional dispersion equation. Water Resour. Res. 26: 1475-1482.
Leij FJ, Skaggs TH and Van Genuchten MT, 1991. "Analytical solution for solute Transport in
three-dimensional semi-infinite porous media."Water Resour. Res. 27:2719-2733.
Randall CJ, 2002. Ground Water Hydraulics and Pollutant Transport. Prentice Hall. Univ of Texas.
Tracy JC, 1992. Movement of nonpoint-source contaminants through heterogeneous soils. Journal
of Irrigation and Drainage Eng. ASCE 118: 88-103.
Valocchi J, 1984. Describing the transport of ion-exchanging contaminant using an effective Kd
approach. Water Resour. Res. 20:499-503.
Van Genuchten MT and Parker JC, 1984. Boundary condition for displacement experiments
through short laboratory soil columns. Soil Sci. Soc, Am J, 48:703-708.
Wylie CR, 1986. Advanced Enginereering Mathematics. Mc Graw-Hills.New York.
Yakirevich, A., Borisov, V. and Sorek, S. 1998. A quasi three-dimensional model for flows and
transport in unsaturated and saturated zones, 1. Implementation of quasi two dimensional case.
Advances in Water Resour. 21: 679-689.
Yeh TCJ, Gelhar L and Gutjahr AL, 1985. Stochastic analysis of unsaturated flow in
heterogenous soil, 3: observation and application.Water Resour. Res. 21: 465-471.