Anderson SH, Petton RL and Gantzer CJ, 1990. Evaluation of constructed and natural soil macropores using X-ray computed tomography. Geoderma 46: 13-29.
Anonymous, 1972. National Engineering Handbook, Hydrology, Section 4. USDA, WashingtonDC.
AzevedoAS, Kanvar RS and Horton R, 1998. Effect of cultivation on hydraulic properties of an Iowa soil using tension infiltrometers. Soil Sci 163: 22-29.
Bear J, 1972. Dynamics of Fluids in Porous Media. Elsevier Pub. Co. Inc, New YorkNY.
Beven K and German P, 1982. Macropores and water flow in soils. Water Resour Res 18: 1311-1325.
Bodhinayake WL, Si, BC and Xiao C, 2004. New method for determining water-conducting macro- and mesoporosity from tension infiltrometer, Soil Sci Soc Am J 68:760–769.
Bouma J, 1982. Measuring the hydraulic conductivity of soil horizons with continuous macropores. Soil Sci Soc Am J 46: 438-441.
Bouma J, Jongerius A and Schoonderbeek D, 1979. Calculation of saturated hydraulic conductivity of some pedal clay soils using micromorphometric data. Soil Sci Soc Am J 43: 261-264.
Bruckler B, Ball C and Renault P, 1989. Laboratory estimation of gas diffusion coefficient and effective porosity in soils. Soil Sci 147: 1-10.
Buttle JM and Mcdonald DJ, 2000. Soil macroporosity and infiltration characteristics of a forest podzol. Hydrol Process 14: 831-848.
Cameira MR, Fernando RM and Pereira LS, 2003. Soil macropore dynamics affected by tillage and irrigation for a silty loam and irrigation for a silty loam alluvial soil in southern Portugal. Soil Tillage Res 70: 131-140.
Casanova M, Messing I and Joel A, 2000, Influence of aspect and slope gradient on hydraulic conductivity measured by tension infiltrometer, Hydrol Proces 14:155–164.
Dunn GH and Philips J, 1991a. Macroporosity of a well-drained soil under no till and conventional tillage. Soil Sci Soc Am J 55: 817-823.
Flint LE and FlintAL, 2002. The soil solution phase. Porosity. p. 241-254. In: Dane JH and Topp GC (eds.). Methods of soil analysis: Part 4. Physical methods, SSSA, MadisonWI.
Gardner WR, 1958. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from water table. Soil Sci 85: 228-232.
Ghodrati M and JuryWA, 1990. A field study using dyes to characterize preferential flow of water. Soil Sci Soc Am J 54:1558-1563.
Joel A and Messing I, 2000. Application of two methods to determine hydraulic conductivity with disc permeameters on sloping land, Eur J Soil Sci 51:93–98.
Logsdon S and Jaynes D, 1993. Methodology for determining hydraulic conductivity with tension infiltrometers. Soil Sci Soc Am J 57:1426–1431.
Luxmoore RJ, Jardine PM, Wilson GV, Jones JR and Zelazny HK, 1990. Physicals and chemical controls of preferred path flow through a forested hillslope. Geoderma 46: 139-154.
Skopp J, 1981. Comment of micro- meso- and macroporosity of soil. Soil Sci Soc Am J 45: 1246.
Timlin DJ, Ahuja LR and Ankney MD, 1994. Comparison of three field methods to characterize apparent macropore conductivity. Soil Sci Soc Am J 58: 278-284.
Walker C, Lin HS and Fritton DD, 2006. Is the tension beneath a tension infiltrometer what we think it is? Vadose Zone Journal 5:860–866.
Watson K and Luxmoore R, 1986, Estimating macroporosity in a forest watershed by use of a tension infiltrometer, Soil Sci Soc Am J 50: 578–782.
Weiler M and Naef F, 2003. An experimental tracer study of the role of macropores in infiltration in grassland soils. Hydrol Proces 17: 477-493.
Wilson GV and Luxmoore RJ, 1988. Infiltration, macroporosity and mesoporosity distributions on two forested watersheds, Soil Sci Soc Am J 52:329–335.
Wooding R, 1968. Steady infiltration from a shallow circular pond. Water Resour Res 4:1259–1273.
Yeh YJ, Lee CH and Chen ST, 2000. A tracer method to determine hydraulic conductivity and effective porosity of saturated clays under low gradients. Ground Water 38: 522-529.