مدل تعیین تلفات بادبردگی و تبخیر در اسپری نازل‌های سامانه آبیاری سنترپیوت

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشکده کشاورزی دانشگاه تبریز

چکیده

بادبردگی و تبخیر از منابع اصلی تلفات آب در سامانه‌های آبیاری بارانی است. شناسایی عومل تاثیرگذار و برآورد دقیق تلفات می‌تواند در کاهش هدررفت آب و بهبود راندمان آبیاری مفید باشد. به دلیل گسترش روز افزون استفاده از سیستم‌ آبیاری سنترپیوت تهیه مدلی برای تعیین این تلفات در اسپری نازل‌های سنترپیوت ضروری به نظر می‌رسد. در این تحقیق با در نظر گرفتن عوامل تاثیرگذار بر تلفات بادبردگی و تبخیر، مدلی برای اسپری نازل‌های سنترپیوت تهیه گردید. شبکه‌ای از ظروف جمع آوری آب به ابعاد 25×25 متر و با فاصله ظروف 25/1 متر ایجاد شد. اسپری نازل‌های متداول نلسون R3000، سنینگر LDN و نلسون D3000 با نازل‌های مختلف و در فشار کارکردها و ارتفاع استقرارهای متفاوت در مرکز این شبکه قرار گرفت. آزمایش­ها در شرایط مختلف انجام و داده‌های هواشناسی مورد نیاز به صورت همزمان ثبت گردید. میزان تلفات آب از تفاضل آب پخش شده از اسپری نازل و رسیده به سطح زمین به دست آمد. با استفاده از تحلیل­های آماری معادلاتی بین مقادیر تلفات و عوامل تاثیر گذار بر تلفات بادبردگی و تبخیر استخراج شد. از میان روش‌های موجود روش‌های فراست-شوالن، کلر-بلیسنر و پلایان و همکاران نیز انتخاب و دقت برآورد آنها با مقادیر حاصل از آزمایش­ها مقایسه گردید. نتایج نشان داد دقت معادلات جدید پیشنهاد شده در این تحقیق رضایت بخش بوده و مقادیر تلفات بادبردگی و تبخیر را دقیق­تر از روش‌های ذکر شده محاسبه می‌کنند. 

کلیدواژه‌ها


عنوان مقاله [English]

Wind Drift and Evaporation Losses Model in Spray Nozzles of Center Pivot Irrigation system

نویسندگان [English]

  • R Delirhasannia
  • AH Nazemi
  • AA Sadraddini
  • D Farsadizadeh
چکیده [English]

Wind drift and evaporation are the main sources of water losses in sprinkler irrigation systems. A proper understanding of factors affecting these losses and estimating their amounts can be useful for reducing water losses and improving irrigation efficiency. It seems necessary to develop a model to estimate these losses in order to increase application efficiency of widely used center pivot irrigation systems. In this research a 25×25 m2 network of catch cans at 1.25 m spacing was prepared in the field. Commonly used Nelson R3000, Senninger LDN and Nelson D3000 spray sprinklers with various nozzle sizes, pressures and elevations were installed at the center of the network. Experiments were conducted at the various weather conditions and the needed climatologic data were measured simultaneously. Water losses were computed in terms of volumetric difference between the emitted water from spray nozzles and the received water on the soil surface. Using statistical analyses several equations which enable to estimate wind drift and evaporation losses were derived. From conventional methods, Frost-Schowalen, Keller-Bliesner and Playan et al. methods were considered and their accuracies were investigated in comparison with the experimental data. Results showed that the proposed new equations estimated water losses satisfactorily and they calculated wind drift and evaporation losses more accurately than the mentioned methods.

کلیدواژه‌ها [English]

  • Center pivot
  • Evaporation
  • losses
  • Model
  • Spray nozzle
  • Wind drift
Abo-Ghobar HM, 1994. The effect of riser height and nozzle size on evaporation and drift losses under arid conditions. J King Saud Univ Aric Sci 6(2): 191-202.
Anonymous, ASAE standards, 2003. Procedure for sprinkler distribution testing for research purposes. ANSI/ASAE S330.1, ASAE, St. Joseph, MI, USA.
Burt CM, Mutaziger AJ, Allen RG and Howell TA, 2005. Evaporation research: review and interpretation. J Irrig Drain Eng, ASCE 131(1): 37-58.
Dechmi F, Playan E, Cavero J and Faci, JM, 2003. Wind effect on solid-set sprinkler irrigation depth and yield of maize (Zea Mays). Irrig Sci 22: 67-77.
Edling RJ, 1985. Kinetic energy, evaporation and wind drift of droplet from low pressure irrigation nozzles. Trans ASAE 28: 1543- 1550.
Faci JM, Salvador R, Playan E  and Sourell H, 2001. A comparison of fixed and rotating spray plate sprinklers. J Irrig Drain Eng., ASCE 127: 224–233.
Frost KR and Schwalen HC, 1955. Sprinkler evaporation losses. Agriculture Engineering 36: 526- 528.
Frost KR and Schwalen HC, 1960. Evapotranspiration during sprinkler irrigation. Trans ASAE 3: 18-20.
Hermsmeier LF, 1973. Evaporation during sprinkler application in a desert climate. ASAE paper No 73/216. ASAE St. Joseph, MI, USA.
Keller J and Bliesner RD, 1990. Sprinkle and Trickle Irrigation. Van Nostrand Reinhold. New york.
KincaidDC, 1996. Spray drop kinetic energy from irrigation sprinklers. Trans ASAE 39: 847-853.
KincaidDC, Solomon KH and Oliphant JC, 1996. Drop size distribution for irrigation sprinklers. Trans ASAE 39: 839-845.
Kolh RD, Kolh RA and de Boer DW, 1987. Measurement of low pressure sprinkler evaporation loss. Trans ASAE 30: 1071-1074.
Lorenzini G and De Wrachien D, 2005. Performance assessment of sprinkler irrigation systems, a new indicator for spray evaporation losses. J Irrigation and Drainage 54 (3): 295-305.
Mc Lean RK, Sriranajn R and Klassen G, 2000. Spray evaporation losses from sprinkler irrigation systems. Canadian Agriculture Engineering 42(1) 1.1-1.15.
Murray J, 1967. On the computation of saturated vapor pressure. J Applied Meteorology 6: 203-204.
 Playan E, Garrido S, Faci JM and Gallan A, 2004. Characterizing pivot sprinklers using an experimental irrigation machine. Agricultural Water Management 70: 177-199.
Playan E, Salvador R, Faci JM, Zapata N, Martinez-cob A and Sanchez I, 2005. Day and night evaporation losses in solid-sets and moving laterals. Agricultural Water Management 76: 139-159.
Seginer I, 1971. Water losses during sprinkling. Trans ASAE 14: 656- 659.
Seginer I, Kantz D and Nir D, 1991. Distortion by wind of distribution patterns of sprinklers. Agricultural Water Management 19: 341-359.
Silva WLC and James LG, 1988. Modeling evaporation and microclimate changes in sprinkler irrigation: II. Model assessment and applications. Trans ASAE 31: 1487- 1493.
Tarjuelo JM, Ortega JF, Montero J and de Juan JA, 2000. Modeling evaporation and drift losses in irrigation with medium size impact sprinklers under semi-arid conditions. Agricultural Water Management 43: 263-284.
Thompson AL, Martin DL, Norman JM, Tolk JA, Howell TA, Gilley JR and Schneider AD, 1997. Testing of a water loss distribution model for moving sprinkler systems. Trans ASAE 40(1): 81-88.
Trimmer WL, 1987. Sprinkler evaporation loss equation. J Irrig Drain Eng, ASCE 113(4): 616-620.
Wright C, 1982. New evaporation crop coefficients. J Irrig Drain Eng, ASCE 108: 57-74.
Yazar A, 1984. Evaporation and wind drift losses from sprinkler irrigation system under various operating  conditions. Agricultural Water Management 8: 439-449.