توسعه مدل آسیب‌پذیری آب‌های زیرزمینی هیبریدی بهینه‌سازی الگوریتم ژنتیک- تصمیم‌گیری چند‌معیاره بر مبنای روش دراستیک

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، بخش مهندسی عمران و محیط ‌زیست، دانشگاه شیراز

2 استادیار بخش مهندسی عمران و محیط ‌زیست، دانشگاه شیراز

چکیده

مدیریت صحیح منابع آب‌های زیرزمینی به‌عنوان یکی از مهمترین منابع تأمین‌کننده آب در دنیا، از اهمیت زیادی برخوردار است. از جمله اقدامات مهم مدیریتی در این زمینه، ارزیابی میزان آسیب‌پذیری آب‌های زیرزمینی با هدف اولویتبندی این منابع از منظر بهره‌بر‌داری، مدیریت و کنترل میزان آلودگی‌های وارد‌ شده در مناطق مختلف و هزینه‌های لازم برای مدیریت آبخوان در نقاط مختلف می‌باشد. در این تحقیق، از رهیافتی بر مبنای روش دراستیک، مدل تصمیم‌گیری چندمعیاره و مدل بهینه‌سازی الگوریتم ژنتیک، جهت ارزیابی آسیب‌پذیری آبخوان دشت شیراز استفاده شد. روش تصمیم‌گیری چندمعیاره جهت اصلاح رتبه‌های مدل دراستیک و مدل بهینه‌سازی الگوریتم ژنتیک به‌منظور بهینه‌سازی وزن‌های پارامترهای مدل دراستیک متناسب با خصوصیات هیدروژئولوژیکی و میزان غلظت نیترات موجود در دشت مورد مطالعه استفاده گردید. این امر با این هدف صورت می‌گیرد که شاخص آسیب‌پذیری دراستیک بیشترین ضریب همبستگی را با میزان غلظت نیترات که از مهمترین آلاینده‌های موجود در منطقه مورد مطالعه است، داشته باشد. همچنین با استفاده از سیستم اطلاعات جغرافیایی (GIS)، نقشه‌های پهنه‌بندی آسیب‌پذیری آبخوان دشت شیراز تهیه شد. نتایج مدل پیشنهادی نشان‌ می‌دهد که نواحی جنوب و جنوب‌شرقی به‌ترتیب در محدوده آسیب‌پذیری خیلی‌زیاد و زیاد قرار دارند. میزان ضریب همبستگی پیرسون حاصل از بهینه‌سازی و اصلاح وزن‌ها و رتبه‌های مدل پیشنهادی با غلظت نیترات برابر 80 درصد می‌باشد که این امر دقت نقشه‌های پهنه‌بندی آسیب‌پذیری آبخوان تهیه شده بر مبنای روش GA-AHP را تایید می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Developing Hybrid GA-AHP Groundwater Vulnerability Model based on DRASTIC Method

نویسندگان [English]

  • yalda norouzi gharagezloo 1
  • Mohammad Reza Nikoo 2
  • A karimi 2
  • M Dehghani 2
1 M.Sc. Graduate, Dept. of Civil and Environmental Engin., Shiraz Univ., Iran
2 Assist. Prof., Dept. of Civil and Environmental Engin., Shiraz Univ., Iran
چکیده [English]

Proper management of groundwater resources, as the main source of fresh water, is very important. Groundwater vulnerability assessment has been applied as a management tool for prioritizing the use of resources, controling the contaminant transfer and adopting cost-effective ways for aquifer management. This study has adopted a novel approach based on DRASTIC method, analytic hierarchy process (AHP), and genetic algorithm (GA) optimization method to assess the vulnerability of Shiraz aquifer. AHP was utilized to modify the rank of DRASTIC model’s parameters and GA optimization model was used to optimize the weights of DRASTIC parameters based on hydro-geological characteristics and nitrate concentrations of the Shiraz aquifer. The main aim of the GA-AHP model was to maximize the DRASTIC index correlation with nitrate concentration. The vulnerability map of Shiraz plain was provided using geographic information system (GIS). The results suggested that the southern and southeastern areas of Shiraz plain were faced with very high and high classes of vulnerability, respectively. The Pearson correlation coefficient between the developed vulnerability index and the nitrate concentrations was estimated as 80%, which confirmed the accuracy of the vulnerability map of Shiraz plain.

کلیدواژه‌ها [English]

  • Groundwater vulnerability
  • Genetic algorithm
  • Multi-criteria decision making
  • DRASTIC
  • Geographic information system (GIS)
Al-Adamat R, Foster I and Baban S, 2003. Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Applied Geography 23: 303-324.
Aller L, Bennett T, Lehr JH, Pretty RJ and Hackett G, 1987. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. US Environmental Protection Agency, Ada, Oklahoma (EPA-600/2-87-035).
Asghari Moghaddam A and Barzegar R, 2014. Investigation of nitrate concentration anomaly source and vulnerability of groundwater resources of Tabriz plain using AVI and GOD methods. Water and Soil Science- University of Tabriz 24(4):11-27. (In Persian with English abstract)
Baghapour MAFadaei Nobandegani ATalebbeydokhti NBagherzadeh SNadiri A AGharekhani M and Chitsazan N, 2016. Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran. Journal of Environmental Health Science and Engineering 14:13: 1-16.
Contreras F, Hanaki K, Aramaki T and Connors S, 2008. Application of analytical hierarchy process to analyze stakeholders preferences for municipal solid waste management plans: Boston, USA. Resources, Conservation and Recycling 52(7): 979-991.
Deb K, 2001. Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley and Sons. New York.
Denny SC, Allen DM and Journeay JM, 2007. DRASTIC-Fm: a modified vulnerability mapping method for structurally controlled aquifers in the southern Gulf Islands, British Columbia, Canada. Hydrogeology Journal 15(3): 483-493.
Dixon B, 2009. A case study using SVM, NN and logistic regression in a GIS to predict wells contaminated with nitrate-N. Hydrogeology Journal 17: 1507-1520.
Esmikhani M, Safavi H and Yazdanipoor M, 2010. Conjunctive management of surface and groundwater resources by using ‌support vector machines and genetic algorithms. 5th National Congress of Civil Engineering, Ferdowsi University of Mashhad, May 4-6, Mashhad, Iran. (In Persian with English abstract)
Fijani E, Nadiri AA, Asghari Moghaddam A, Tsai F and Dixon B, 2013. Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh-Bonab plain aquifer, Iran. Journal of hydrology 530: 89-100.
Foster SS, 1987. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. TNO Committee on Hydrological Research: Proceedings & Information 38: 69-86.
Ghadami M, Ghahraman B, Sharifi M and Rajabi Mashhadi H, 2009. Optimization of multireservoir water resources systems operation using genetic algorithm. Water Resources Research 5(2):1-15. (In Persian with English abstract)
Goldberg DE, 1989. Genetic Algorithms in Search, Optimization and Machine Learning, 1st Ed., Addison-Wesley Publishing Company, New York.
Hamza MH, Added A, Rodríguez R, Abdeljaoued S and Mammou AB, 2007. A GIS-based DRASTIC vulnerability and net recharge reassessment in an aquifer of a semiarid region (Metline-Ras Jebel-RafRaf aquifer, Northern Tunisia). Journal of Environmental Management 84: 12-19.
Hassanzadeh Y, Abdi Kordani A and Fakheri Fard A, 2011. Drought forecasting using genetic algorithm and conjoined model of neural network-wavelet. Journal of Water and Wastewater 3:48-59. (In Persian with English abstract)
Huan H, Wang J and Teng Y, 2012. Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: a case study in Jilin City of northeast China. Science of the Total Environment 440: 14-23.
Izadi A and Rakhshanderoo Gh, 2013. Using GA for the economic optimization of WDN designs based on quantitative and qualitative criteria. Journal of Water and Wastewater 26(1):119-124. (In Persian with English abstract)
Khosravi Kh, Habibnejad Roshan M, Solaimani K and Babaei Kh, 2012. Assessment of groundwater vulnerability using a-GIS based DRASTIC model (case study: Dehgolan plain, Kurdistan province). Journal of Watershed Management Research 3(5):42-62. (In Persian with English abstract)
Lalehzari R and Abbaslou H, 2016.  Simulating the effect of optimal water allocation on groundwater in monthly stress periods (Baghmalek plain, Khuzestan province). Water and Soil Science- University of Tabriz 26(4/1):307-320. (In Persian with English abstract)   
Momtahen Sh and Borhani Darian A, 2005. Genetic algorithm (GA) method for optimization of multi-reservoir systems operation. Journal of Water and Wastewater 56:11-20. (In Persian with English abstract)
Neshat AR, Pradhan B, Pirasteh S and Shafri HZM, 2014. Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environmental Earth Science 71: 3119-3131.
Neshat A, Pradhan B and Dadras M, 2014. Groundwater vulnerability assessment using an improved DRASTIC method in GIS. Resources, Conservation and Recycling 86: 74-86.
Nikoo M, Karimi A, Alizadeh MR and Baghlani A, 2017. Maximizing reliability of supplying drinking water with conjunctive operation of groundwater and water transfered from Salman-Farsi dam. Water and Soil Science- University of Tabriz 27(2): 185-197. (In Persian with English abstract)
Norouzi Y, Nikoo M, Karimi A and Dehghani M, 2015. Assessment of groundwater vulnerability using multi criteria decision making- DRASTIC model: Case study of Shiraz plain. 3th International Symposium on Environmental and Water Resources Engineering, June 2-3, Tehran, Iran. (In Persian with English abstract)
Norouzi Y, Nikoo M, Karimi A and Dehghani M, 2015. Developing a hybrid model for determination of aquifer vulnerability against toxic elements and nitrate: Application of decision making model and IRWQIGT index. 1th Water Sciences and Engineering Conference, June 8-9, Tehran, Iran. (In Persian with English abstract)
Pacheco FAL and Sanches LF, 2013. The multivariate statistical structure of DRASTIC model. Journal of Hydrology 476:442-459.
Panagopoulos GP, Antonakos AK and Lambrakis NJ, 2006. Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeology Journal 14: 894-911.
Pourghasemi HR, Pradhan B and Gokceoglu C, 2012. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Natural Hazards 63(2): 965-996.
Sener E and Davraz A, 2013. Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir Lake basin (Isparta, Turkey). Hydrogeology Journal 21: 701-714.
Sinan M and Razack M, 2009. An extension to the DRASTIC model to assess groundwater vulnerability to pollution: Application to the Haouz aquifer of Marakech (Morocco). Environmental Geology 57: 349-363.
Soltani F, Kerachian R and karamuz M, 2007. Optimal operation of reservoir dams with little use of qualitative models of adaptive neural fuzzy inference model (ANFIS) and genetic algorithm optimization. Sharif Journal 51:3-10. (In Persian with English abstract)
Thirumalaivasan D, Karmegam M and Venugopal K, 2003. AHP-DRASTIC: software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environmental Modelling & Software 18: 645-656.
Vrba J and Zaporozec A, 1994. Guidebook on Mapping Groundwater Vulnerability. Heise, Germany.
Yang Ch, Chang L, Chen Sh and Yeh M, 2009. Multi-objective planning for conjunctive use of surface and subsurface water using genetic Algorithm and Dynamics Programming. Journal of Water Resource Planning and Management 23: 417-437.
Youssef MA, Pradhan B and Tarabees E, 2011. Integrated evaluation of urban development suitability based on remote sensing and GIS techniques: contribution from the analytic hierarchy process. Arabian Journal of Geosciences 4: 463-47