پهنه‌بندی فرسایش پذیری بادی خاک سواحل شرقی دریاچه ارومیه

نویسندگان

1 گروه علوم خاک ، دانشکده کشاورزی ، دانشگاه تبریز

2 گروه سنجش از دور و GIS ، دانشگاه تبریز

چکیده

فرسایش بادی خاک زمانی رخ می­دهد که سرعت باد از آستانه فرسایش خاک بیشترشده و سطح خاک با گیاهان یا باقیمانده آن­ها، ناهمواری­های سطح و یا موانع دیگر حفاظت نشده باشد. همچنین فرسایش­پذیری بادی یکی از مهمترین پارامترهای تعیین­کننده فرسایش بادی تحت شرایط آب و هوایی معین می­باشد. هدف اصلی این تحقیق تهیه نقشه فرسایش­پذیری بادی خاک از طریق ارتباط تجربی بین تصاویر ماهواره­ای و ویژگی های فیزیکو شیمیایی در سواحل شرقی دریاچه ارومیه می­باشد. برای این تحقیق نمونه­برداری خاک در 153 نقطه سه لایه ارتفاعی (1271-1273، 1273-1275و 1275-1278متر ارتفاع از سطح دریا) انجام و از 4 روش نظارت شده مانند حداقل فاصله، حداکثر احتمال، شبکه عصبی مصنوعی(ANN) و ماشین بردار پشتیبان(SVM) درطبقه­بندی و نقشه­برداری از فرسایش­پذیری استفاده شد. ویژگی­های فیزیکوشیمیایی نمونه­های خاک نیز اندازه­گیری و 26 نمونه از آن­ها بصورت تصادفی جهت بررسی فرسایش­پذیری بادی در تونل باد انتخاب گردید. نتایج حاصله از آزمایش­های تونل­باد با ارتفاع ۲۰ سانتیمتراز کف تونل، بیانگر فرسایش­پذیری بادی میانگین ((g m-2  min-1)/(m s-1)) 92/2 است. نتایج رگرسیون گام به گام نیز نشان داد که از بین ویژگی­های فیزیکو شیمیایی خاک­ها، جزء فرسایش­پذیر مهمترین ویژگی خاک است که در تخمین فرسایش­پذیری مورد استفاده قرار می­گیرد و با فرسایش­پذیری بادی خاک همبستگی مثبت دارد. میانگین وزن قطر خاکدانه­ها با فرسایش­پذیری خاک همبستگی منفی معنی­داری داشته و هیچ رابطه­ای بین ویژگی­های شیمیایی خاک و فرسایش­پذیری یافت نشد. از ۴ روش طبقه­بندی نظارت شده، شبکه عصبی مصنوعی قابلیت بالاتری درطبقه­بندی و نقشه­برداری فرسایش­پذیری داشته ودر نهایت نتایج نشان داد که دقت کلی طبقه­بندی1/57 ٪ می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Soil Wind Erodibility Zonation of the Urmia Lake Eastern shores

نویسندگان [English]

  • saghar chakherlou 1
  • Ali asghar Jafarzadeh 1
  • Abbas Ahmadi 1
  • Bakhtiar Feizizadeh 2
  • Farzin Shahbazi 1
1 Soil Science Department, Faculty of Agriculture, University of Tabriz
2 2Department of Remote Sensing and GIS, University of Tabriz
چکیده [English]

The wind erosion occurs when wind speed exceeds the soil erosion threshold and plants or their residues, surface roughness, or other obstacles do not protect the soil surface. Also, wind erodibility is one of the most important determining parameters of wind erosion under certain climatic conditions. The main objective of this research was mapping of soil erodibility through empirical relationship between satellite imagery and physicochemical properties and estimation of soil erosion using a comprehensive assessment model on the east shore of the Urmia Lake. For this research work soil sampling carried out in 153 points of three elevation classes (1271-1273, 1273-1275 and 1275-1278 meters) and 4 supervised classification methods such as, support vector machine (SVM), maximum likelihood classification (MLC), minimum distance and artificial neural network (ANN) were used for classifying and mapping of soil erodibility. Soil physic-chemical properties measured and 26 samples of them randomly were selected for wind erodibility measurement in an artificial wind tunnel. Wind tunnel experiments at a distance of 20 cm from the tunnel floor, revealed wind erodibility of 2.92 ((g m-2 min-1)/ (m s-1)). Also, stepwise regression results showed that among the physic-chemical properties of soils, erodible fraction was the most important soil property which used in estimating erodibility and has a positive correlation with soil erodibility. The mean weight of aggregate diameter had negative correlation with soil erodibility and no relationship was found between soil chemical properties and erodibility. Among the  four supervised classification methods, the ANN has a higher capability in classifying and mapping of erodibility. Finally, the results showed that the overall classification accuracy is 57.1%.

کلیدواژه‌ها [English]

  • Wind tunnel
  • Physico-chemical properties
  • Urmia Lake
  • Digital mapping
  • Soil erodibility
Ahmadi A, 2009. Artificial neural networks applicability in erosion and runoff simulation using fractal dimensions. PhD dissertation, Soil Science Department, University of Tabriz, Iran (in Persian with English abstract).
Bower CA, Reitemeier F and Fireman M, 1952. Exchangeable cation analysis of saline and alkali soils. Journal of SoilScience 73:251-261.
Chepil W, 1950. Methods of estimating apparent density of discrete soil grains and aggregates. Soil Science 70: 351-362.
Colazo JC and Buschiazzo DE, 2010. Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma 159: 228-236.
Gardner WH, 1986. Water Content. Pp. 493-544. In: Klute A, (Ed.), Methods of Soil Analysis. Part 1, Physical and Mineralogical Methods, ASA and SSSA, Madison, Wisconsin.
Gee GW and Or D, 2002. Particle size analysis. Pp. 255–293. In: Dane JH and Topp GC (eds). Methods of Soil Analysis.Part 4. Physical Methods. Soil Science Society of America. Madison, Wisconsin.
Goetz J, Brenning A, Petschko H and Leopold P, 2015. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling compute. Geosciences 81: 1-11.
Hassan AA and Mustafa MA, 2011. Assessment and mapping of wind erodibility of aridisols and entisols in the River Nile State, Sudan. Pp. 425-442.The 5th Annual Conference on Agricultural and Veterinary Research, February Khartoum.
Lopez MV, Herrero JM, Hevia GG, Gracia R and Buschiazzo DE, 2007. Determination of the wind-erodible fraction of soils using different methodologies. Geoderma 139: 407-411.
McBratney AB, Santos MLM and Minasny B, 2003. On digital soil mapping. Geoderma 117: 3-52.
Mustafa MA and Medani GH, 2004. Wind erodibility of soils from Khartoum State. Journal of Agricultural Sciences 11:149-164.
Négyesi G, Lóki J, Buró B and Szabó S, 2016. Effect of soil parameters on the threshold wind velocity and maximum eroded mass in a dry environment. Arab Journal Geoscience 9: 1-10.
Nelson DW and Sommers LE, 1996. Total Carbon, Organic Carbon, and organic Matter. Pp. 961-1010. In: Sparks DL,ed). Methods of Soil Analysis. Chemical Methods. Soil Science Society of America Journal. Madison.
Nohtani M, Pahlavan Ravi A, Dehvari A, Jahantigh M and Hashemi Z, 2014. Effect of soil physical and Chemical characteristic on soil erodibility by wind and its zoning. (Zahak as a Case Study). Master thesis, Department of watershed and management, University of Zabol, Iran (In Persian with English abstract).
Pasztor L, Négyesi G, Laborczi A and Kovacs T, 2016. Integrated spatial assessment of wind erosion risk in Hungary.Hazards Earth System Science 16: 2421-2432.
Raei B, 2019. Evaluation of some artificial and hybrid intelligence techniques in modeling the inherent erosion of soil against wind (Case study: Tabriz plain). PhD dissertation, Soil Science Department, University of Tabriz, Iran (In Persian with English abstract).
Rakkar MK, Blanco-Canqui H and Tatarko J, 2019. Predicting soil wind erosion potential under different corn residue management scenarios in the central Great Plains. Geoderma 353: 25-34.
Richard LA, 1969. Diagnosis and Improvements of Saline and Alkali Soils. P. 60. Agricultural Handbook. USDA.