تخمین زمانی و مکانی بار معلق رودخانه آجی چای با استفاده از زمین آمار و شبکه عصبی مصنوعی

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشکده کشاورزی دانشگاه تبریز

چکیده

پدیده انتقال رسوب در رودخانه­ها از پیچیده­ترین مباحث مهندسی رودخانه بوده و همواره مورد توجه کارشناسان و مهندسین آب می­باشد. یکی از مشکلات عمده که سازه­های هیدرولیکی بنا شده در یک رودخانه را تهدید می­کند مسأله انتقال و انباشت رسوبات می­باشد. لذا ارائه­ی راهکارهای نوین جهت برآورد دقیق بار معلق عبوری از مقاطع مختلف رودخانه­ها در مقیاس­های زمانی مختلف، نقش بسزایی در پیشبرد صحیح مطالعات مهندسی رودخانه خواهد داشت. نظر به اینکه آماربرداری رسوب معلّق در اکثر ایستگاه­های رسوب سنجی کشور در مقیاس زمانی روزانه و به صورت نامنظّم انجام می­پذیرد در صورت نیاز به تخمین رسوبات معلق ماهانه در یک مقطع مشخص از رودخانه، لازم است این برآورد با استفاده از مدل­های زمانی و مکانی دقیق­تر انجام پذیرد. در تحقیق حاضر با استفاده از شبکه عصبی مصنوعی و علم زمین آمار و با ادغام آنالیز سری­های زمانی با آنالیز سری­های مکانی به ارائه یک مدل جامع، جهت تخمین بار معلق ماهانه در طول رودخانه آجی­چای اقدام گردیده است. بدین منظور با استفاده از شبکه عصبی مصنوعی اقدام به داده سازی منطقی در مقیاس زمانی ماهانه نموده و به وسیله تخمینگرهای تک پارامتری کریجینگ و چند پارامتری کوکریجینگ با منظور نمودن دبی جریان به عنوان پارامتر کمکی، مقدار بار معلق رسوبی ماهانه، در طول رودخانه آجی چای برآورد گردیده است. نتایج نشان دادند ضمن معتبر بودن هر دو مدل کریجینگ و کوکریجینگ در منطقه مورد مطالعه روش کوکریجینگ  در مقایسه با روش کریجینگ در برآورد مکانی بار معلق ماهانه نتایج بهتری را ارائه می­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Spatial and Temporal Estimation of Suspended Sediment Load in Aji-chay River Using Geostatistics and Artificial Neural Network

نویسندگان [English]

  • S Tolouei
  • A Hosseinzadeh Dalir
  • A Fakheri Fard
  • F Salmasi
چکیده [English]

        Sediment transport phenomenon in rivers, which has been under the consideration of specialists and water engineers, is one of the complicated problems in river engineering studies. Usually sediment transport and storage that threaten hydraulic structures in rivers are important problems. So presenting new and efficient approaches for accurate estimation of suspended sediment load at different scales will play very important role in river engineering studies. As in most of the sediment gauging stations of the country, sediment sampling is carried out daily and irregularly, if it is needed to know the suspended sediment load in a particular of river, it is necessary to utilize suitable temporal and spacial models. In this study, geostatistics and artificial neural network were used in order to combine time and space series analyses together to present a comprehensive model to estimate monthly suspended sediment load in Aji-chay river. Therefore, rational data has been produced with the aid of artificial neural network at monthly scale, then by both uni and multi-parametric estimators namely kriging and cokriging (in addition to suspended sediment load, water discharge is also used as a secondary variable) methods, monthly suspended sediment load was estimated along the Aji-chay river. Results showed that while both models were valuable in restricted area, the cokriging model in comparison with kriging model was more accurate.

اسلام پورف، 1375. بهینه سازی چاهک های مشاهداتی منطقه نکا به روش کریجینگ. پایاننامه  کارشناسی ارشد. دانشکده کشاورزی. دانشگاه تهران.
اعلمی م، نورانی و، نظم آرا ح، 1388. قابلیت شبکه عصبی مصنوعی جهت مدل سازی چند ایستگاهه بار معلق در مقایسه با روش  منحنی رسوب. مجله  دانش آب و خاک ، جلد 1/19 شماره 2 . صفحه­های 45 تا 55.
حسنی پاک ع، 1377. زمین­آمار(ژئواستاتیستیک). انتشارات دانشگاه تهران.
 شفاعی بجستان م، 1377. هیدرولیک رسوب. انتشارات دانشگاه شهید چمران اهواز.
مدنی ح، 1369. مبانی زمین­آمار. انتشارات دانشگاه صنعتی امیرکبیر.
منهاج م ب،1384. مبانی شبکه عصبی مصنوعی(هوش محاسباتی). انتشارات دانشگاه صنعتی امیر کبیر، چاپ سوم.
نورانی و، طالب بیدختی ن، عابدینی م ج، رخشنده رو غ ر، 1384. تخمین بار رسوبی معلق با استفاده از زمین­آمار، مطالعه­ی موردی  تلخه­رود. مجله­ی تحقیقات منابع آب ایران، سال اول شماره 2. صفحه­های 42 تا 50.
Abtew W, Obey  SJ and Shih G, 1993. Spatial analysis for monthly rainfall in south Florida. Water Resourses Bulletin 29:179-188.
Alp M and Cigizoglu HK, 2005. Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data. J Environmental Modeling  Software 22:2-13.
Bray D and Xie H, 1993. A regression method for estimating suspended sediment yield for ungauged watersheds in Atlantic, Canada. J Civil Engineering 20:82-87.
Cigizoglu HK and Alp M, 2006. Generalized regression neural network in modeling river sediment yield. J Advances in Engineering Software 37: 63-68.
Isaaks EH and Srivastava RM, 1989. Applied Geostatistics, OxfordUniversity.
Li Z, Zhang Y, Schilling K and Skopec M, 2005. Cokriging estimation of daily suspended sediment loads. J Hydrology  327:389-398.
Mahdian MH and Gallichand H, 1997. Regipnal estimation of water defciti and potato yield In Quebec. J Canadian Agric Eng 39:165-175.
Maidment DR, 1993. Hand book of hydrology. Mc Graw Hill, New York.
Nagy HM, Watanabe K and Hirano M, 2002. Prediction of sediment concentration in rivers using artificial neural network model. J Hydraulic Engineering 128:588-594.
Pan GC, Gaard D, Moss K and Heiner T, 1993. A Comparison Between cokriging and ordinary kriging: Case Study with a Polymetalic Deposit. J Mathematical Geology 25:377-398.
Sajikumar N and Thandaveswara BS, 1999. A non linear rainfall- runoff modeling using an artificial network. J Hydrology 36:32-35.
Toth E, Brath A and Montanari A, 2000. Comparison of short-term rainfall prediction model for real-time flood forecasting. J Hydrology 239:132-147.