تأثیر محتوای رطوبتی خاک بر تولید رواناب و هدررفت خاک از شیارها در کرت‌های آزمایشی صحرایی در دامنه‌های با شیب مختلف

نویسندگان

1 استاد، گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

2 دانشجوی کارشناسی ارشد، گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

چکیده

محتوای رطوبتی خاک، عامل فیزیکی مهمی در اغلب فرآیندها مانند نفوذپذیری و فرسایش خاک است. این مطالعه با هدف بررسی تأثیر محتوای رطوبتی خاک بر رواناب و کنده شدن خاک از شیارهادر دامنه‌های با خاک­های درشت‌دانه در منطقه نیمه­خشک انجام شد. برای این منظور جویچه­های کشت با طول 6 متر در پنج کشتزار با شیب­های متفاوت (1/6، 6/10، 8/14، 7/20 و1/ 27 درصد) با چهار سطح رطوبتی شامل هواخشک (AD)، بین ظرفیت مزرعه و هواخشک (FC-AD)، ظرفیت مزرعه (FC) و رطوبت اشباع (SP) در قالب طرح کاملاً تصادفی در سه تکرار احداث شدند. برای بررسی هدررفت خاک در دامنه­ها از جریانی با دبی ثابت 2 لیتر بر دقیقه استفاده شد. خاک­ دامنه­ها دارای بافت درشت (با 56 تا 75 درصد شن) و سنگی (از 22 تا 57 درصد)، با ساختمان ضعیف و نفوذپذیری زیاد بودند. نتایج نشان داد که در دامنه‌های با شیب 1/6، 8/14 و 7/20 درصد با افزایش رطوبت خاک، هدررفت خاک کاهش می­یابد. بیش­ترین مقدار هدررفت خاک (گرم بر مترمربع در ثانیه) به­ترتیب در رطوبت­های FC-AD (01/0)، AD (306/0) و AD (0045/0) مشاهده شد. با افزایش محتوای آب خاک، پیوستگی توده خاک افزایش یافت و بخش عمده رواناب به‌صورت زیرسطحی در شیارها جاری شد و در نتیجه رواناب سطحی و انتقال ذرات در شیارها کاهش یافت. این پژوهش نشان داد که در دامنه­های با بافت درشت­دانه با افزایش محتوای رطوبتی خاک، هدررفت خاک به­شدت کاهش می­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Soil Water Content on Runoff Production and Soil Loss from Rills in Field Experimental Plots in Different Slopes

نویسندگان [English]

  • alireza vaezi 1
  • Zahra Haghani 2
1 Prof., Soil Sci. Dept., Faculty of Agric., University of Zanjan, Iran
2 MSc. Student, Soil Sci. Dept., Faculty of Agric., University of Zanjan, Iran
چکیده [English]

Soil water content (SWC) is an important physical factor that plays an essential role in many processes such as infiltration and soil erosion. This study was conducted to investigate the effect of SWC on runoff and soil detachment from rills in coarse-grained soils in the semi-arid region. For this purpose, furrows with 6 m in length were installed in five rainfed farms with different slope steepness (6.1, 10.6, 14.8, 20.7 and 27.1%) treated with four moisture levels including air-dried (AD), between air-dried and field capacity (AD-FC), field capacity (FC) and saturation point (SP) in a completely randomized design witht three replications. Flow rate with a discharge of 2 L min-1 was used to investigate soil detachment from the farms. The soils were coarse texture (having 56-75% sand) and rocky (having 22-57%) with unstable structure and high infiltration rate. Based on the results, soil detachment decreased with increasing SWC in 6.1, 14.8 and 20.7 % slopes. The highest soil detachment rate (g m-2s-1) in these lands was observed in AD-FC (0.01), AD (0.306) and AD (0.0045), respectively. By increasing SWC, the continuity and stability of soil mass of furrow increased, and runoff occurred mostly as subsurface flow in the rills. Surface runoff as well as the soil particle detachment decreased in the rills. Therefore, in the semi-arid slopes with coarse-grained soil, soil detachment rate decreases with increasing SWC.
 

کلیدواژه‌ها [English]

  • Gravel
  • Soil texture
  • Saturation moisture
  • Soil structure
  • Soil permeability
Abbasi M, Najafineja A, Berdi Sheikh V and Azim Mohseni M, 2017. Investigating land use and slope effects on soil properties, runoff and sediment using rainfall simulator case study of Kechik watershed in Golestan province. Journal of Environmental Erosion Research 4(24):104-124.
Arsham A, Akhond Ali AM and Behnia AK. 2009. Study on effects of soil antecedent moisture content in runoff and sediment using rainfall simulator. Desert and Rangeland Research Journal 16: 445-455 (In Persian with English abstract)
Azmoodeh A, Kavian A, soleimani K and Vahabzadeh Gh. 2010. Comparing runoff and soil erosion in forest, dry farming and garden land uses soils using rainfall simulator. Journal of Water and Soil 24(3): 490-500. (In Persian with English abstract)
Behtari M and Vaezi AR, 2018.  Effect of initial soil moisture on runoff generation and soil loss in different soil textures under simulated rainfall condition. Iran-Watershed Management Science and Engineering 11(39):11-21. (In Persian with English abstract)
Besharat F and Vaezi AR, 2015. Effect of temporal distribution pattern of rainfall during events on runoff and soil loss under simulated rainfalls. Iran-Watershed Management Science and Engineering 9(29):9-18. (In Persian with English abstract)
Blake GR and Hartge KH, 1986. Bulk density Methods of Soil Analysis: Part, 1, pp. 363-375.
Castillo VM, Gomez-Plaza A and Martınez-Mena M, 2003. The role of antecedent soil water content in the runoff response of semiarid catchments: a simulation approach. Journal of Hydrology 284:114-130.
Defersha MB and Melesse AM, 2012. Effect of rainfall intensity, slope and antecedent moisture content on sediment concentration and sediment enrichment ratio. Catena 90: 4752.
Gandolfo C and Savi F, 2000. A mathematical model for the coupled simulation of surface runoff and infiltration. Journal of Agriculture Engineering Resource 75:49-55.
Gee GW and Bauder JW, 1986. Particle-size analysis. Pp. 383-411. In: Klute A (ed). Methods of soil analysis: Part 1. Physical and Mineralogical Methods. The American Society of Agronomy. Madison, Wisconsin.
Guo T, Wang Q, Li D and Zhuang J, 2010. Effect of surface stone cover on sediment and solute transport on the slope of fallow land in the semiarid loess region of northwestern China. Journal of Soils and Sediments 10:1200-1208.
Hardie M, Lisson S, Doyle R and Cotching W, 2013. Determining the frequency, depth and velocity of preferential flow by high frequency soil moisture monitoring. Journal of Contaminant Hydrology 144:66–77.
Hasanzadeh H, Vaezi AR and Mohammadi MH, 2013. Runoff variations of different soils in plot scale under the same simulated rainfalls. Iranian Journal of Soil Water Research 44(3): 245–254. (In Persian with English abstract)
Hlavacikova H, Novak V and Holko L, 2015.  On the role of rock fragments and initial soil water content in the potential subsurface runoff formation. Journal of Hydrology and Hydromechanics 63(1):71–81.
Kaewmano C, Kheoruenromne I, Suddhiprakarn A and Gilkes RJ, 2009. Aggregate stability of salt-affected kaolinitic soils on the North-east Plateau, Thailand. Soil Research 47(7):697–706.
Kamper DW and Rosenau RC, 1986. Aggregate stability and aggregate and aggregate size distribution. Pp. 425-442. In: Klute A. (ed). Methods of Soil Analysis. Part 1. Physical Properties. The American Society of Agronomy. Madison, Wisconsin.
Kavian A, Azmodeh A, Soleimani K and Vahabzadeh Gh. 2010. Effect of soil properties on runoff and soil erosion in forest lands. Journal of Range and Watershed Management 36(1): 89-104. (In Persian with English abstract)
Lado M, Ben-Hur M and Shainberg I, 2004. Soil wetting and texture effects on aggregate stability, seal formation, and erosion Soil Science Society of America Journal 68:1992–1999.
Li J, Cai Q and Sun L, 2010. Reviewing on factors and threshold conditions of rill erosion. Progress in Geography 29(11):1319–1325.
Li M, Li ZB, Ding WF, Liu PL and Yao WY, 2006. Using rare earth element tracers and neutron activation analysis to study rill erosion process. Applied Radiation and Isotopes 64(3):402-408.‏
Liu H, Lei TW, Zhao J, Yuan CP, Fan YT and Qu LQ, 2011. Effects of rainfall intensity and antecedent soil water content on soil infiltrability under rainfall conditions using the runoff-on-out method. Journal of Hydrology 396:24-32.
Marques MJ, Bienes R, Jimenes L and Perez-Rodrigues R, 2007. Effect of vegetal cover on runoff and soil erosion under light intensity events, rainfall simulation over USLE plots. Science of the Total Environment 378:161-165.
Morgan, RPC, 2005. Soil Erosion and Conservation. National Soil Resourses Institute, Cranfield University (Third Ed.) Blackwell Publishing Ltd.
Opsomer JD, Botts C and Kim JY, 2003. Small area estimation in a watershed erosion assessment survey. Journal of Agricultural, Biological, and Environmental Statistics 8(2):139-152.‏
Polyakov VO and Nearing MA, 2003. Sediment transport in rill flow under deposition and detachment conditions. Catena 51:33-43.
Rejman J and Brodowski R, 2005. Rill characteristics and sediment transport as a function of slope length during a storm event on loess soil. Earth Surface Process and Landforms 30:231-239.
Rieke-Zapp D, Poesen J and Nearing MA, 2007. Effects of rock fragments incorporated in the soil matrix on concentrated flow hydraulics and erosion. Earth Surface Processes and Landforms 32:1063-1076.
Romero CC, Stroosnijder L and Guillermo AB, 2007. Interrill and rill erodibility in the northern Andean Highlands. Catena 70:105-113.
Rubio JL, Forteza J, Andreu V and Cerni R, 1997. Soil profile characteristics influencing runoff and soil erosion after forest fire: a case study (Valencia, Spain). Soil Technology 11(1):67-78.
Sadeghi SHR, Zarif Moazzam MS and Mirnya SKH, 2014. Time variations of hydrological processes of small experimental plots in a forest watershed. Water and Soil Conservation Research 21(6):207-222. (In Persian with English abstract)
Shapiro SS and Wilk MB, 1965. An analysis of variance test for normality (complete samples). Biometrika 52 (3–4):591–611.
Truman CC, Potter TL, Nuti RC, Franklin DH and Bosch DD, 2011. Antecedent water content effects on runoff and sediment yields from two coastal plain ultisols. Agricultural Water Management 98:1189-1196.
Vahabi J and Mahdian MH, 2008. Rainfall simulation for the study of the effects of efficient factors on run-off rate. Current Science 95:1439-1445.   
Vahabi J and Nikkami D, 2008. Assessing dominant factors affecting soil erosion using a portable rainfall simulator. International Journal of Sediment Research 23:375-385.
Wangemann SG, Kohl RA and Molumeli PA, 2000. Infiltration and percolation influenced by antecedent soil water content and air entrapment. Transactions of the American Society of Association Executives 43:1517–1523.
Wei L, Zhang B and Wang M, 2007. Effects of antecedent soil moisture on runoff and soil erosion in alley
          cropping systems. Agricultural Water Management 94:54-62.
Wirtz S, Seeger M and Ries JB, 2012. Field experiments for understanding and quantification of rill erosion processes. Catena 91(1):21–34.
Zarinabadi E and Vaezi AR. 2016. Runoff production and soil loss in pasture with poor coverage and affected by land use change and plow direction. Iranian Journal of Soil and Water Research 47(1):87-98. (In Persian with English abstract)
Zhou W and Wu B, 2008. Assessment of soil erosion and sediment delivery ratio using remote sensing and GIS: a case study of upstream Chaobaihe River catchment, north China. International Journal of Sediment Research 23(2):167-173.
Zhang Y, Liu J, Xu X, Tian Y, Li Y and Gao Q, 2010. The response of soil moisture content to rainfall events in semi-arid area of Inner Mongolia. Procedia Environmental Sciences 2:1970–1978.         
Ziadat FM and Taimeh AY, 2013. Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation and Development 24(6):582-590.