مدل‌سازی ضریب دبی سرریزهای کنگره‌ای توسط تکنیک‌های هوش مصنوعی

نویسندگان

1 دانشجوی دکتری عمران، گروه مهندسی عمران، واحد اراک، دانشگاه آزاد اسلامی، اراک

2 دانشیار گروه مهندسی عمران، واحد اراک، دانشگاه آزاد اسلامی، اراک

3 دانشیار گروه مهندسی آب، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه

چکیده

در این مطالعه، جهت تخمین ضربی دبی سرریزهای کنگره؜ای، از یک روش تکاملی بر مبنای نرو- فازی استفاده شد. به منظور بهینه­سازی پارامترهای سیستم استنتاج عصبی- فازی سازگار (ANFIS) از الگوریتم کرم­شبتاب (FFA) استفاده گردید. در مدل؜سازی روش؜های ANFIS  و  ANFIS-FFA، جهت بررسی عدم قطعیت مدل، از شبیه­سازی مونت کارلو استفاده شد. علاوه بر این، با استفاده از روش اعتبارسنجی چند لایه اقدام به ارائه مدل؜هایی شد که از انعطاف­پذیری و تعمیم­پذیری قابل توجهی برخوردار بود. در ابتدا، پارامترهای بی بعد ورودی شامل عدد فرود (Fr)، نسبت هد روی سرریز به ارتفاع سرریز (HT/p )، زاویه راس (α)، نسبت طول تاج سرریز به عرض کانال (Lc/W)، نسبت طول راس سرریز به عرض زاویه راس (A/w) و نسبت عرض زاویه راس به ارتفاع سرریز (w/p ) تعریف و برای ANFIS و ANFIS-FFA هفت مدل مختلف توسعه داده شدند. سپس با استفاده از تحلیل حساسیت، مدل­های برتر (ANFIS 5 و ANFIS-FFA 5) و موثرترین پارامتر ورودی (عدد فرود) شناسایی گردیدند. همچنین، نتایج توزیع خطا نشان داد که تقریبا 70 درصد نتایج مدل برتر (ANFIS-FFA 5) خطایی کمتر از 5 درصد داشتند. به­عبارت دیگر، دقت خوب مدل برتر به لحاظ آماری تایید گردید. در انتها تحلیل عدم قطعیت برای مدل­های برتر اجرا گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling the Discharge Coefficient of Labyrinth Weirs Using Artificial Intelligence Techniques

نویسندگان [English]

  • Shahabodin Shafiei 1
  • Mohsen Najarchi 2
  • saeid shabanlou 3
1 Ph.D. Student, Dept. of Civil Eng., Arak Branch, Islamic Azad Univ., Arak, Iran
2 Assoc. Prof., Dept. of Civil Eng., Arak Branch, Islamic Azad Univ., Arak, Iran
3 Assoc. Prof., Dept. of Water Eng., Kermanshah Branch, Islamic Azad Univ., Kermanshah, Iran
چکیده [English]

In this research, an evolutionary based Neuro-fuzzy technique was utilized to estimate the discharge coefficient of labyrinth weirs. In order to optimize the parameters of the adaptive Neuro-fuzzy inference system (ANFIS), the Firefly Algorithm (FFA) was implemented. In modeling the ANFIS-FFA and ANFIS methods, the Monte Carlo simulation was used to evaluate uncertainty of the model. Furthermore, several models with significant flexibility and generalizability were provided using the k-fold cross validation method. First, the input dimensionless parameters including the Froude number (Fr), ratio of the head above the weir to the weir height (HT/p < /em>), cycle sidewall angle (α), ratio of length of the weir crest to the channel width (Lc/W), ratio of length of the apex geometry to the width of a single cycle (A/w) and the ratio of width of a single cycle to weir height (w/p < /em>) were defined. After that, seven different models were introduced for ANFIS and ANFIS-FFA. Then, using a sensitivity analysis, the superior models (ANFIS-FFA 5 and ANFIS 5) and the most effective input parameter (Froude number) were identified. In addition, the error distribution results showed that about 70% of the superior model (ANFIS-FFA 5) results had an error less than 5%. In other words, the superior model had a high statistical significance. Ultimately, the uncertainty analysis for the superior models was carried out.

کلیدواژه‌ها [English]

  • ANFIS
  • Discharge coefficient
  • Firefly Algorithm
  • Labyrinth weir
  • optimization
Azimi H, Bonakdari H and Ebtehaj I, 2019. Design of radial basis function-based support vector regression in predicting the discharge coefficient of a side weir in a trapezoidal channel. Applied Water Science 9(4): 78.
Bagheri S and Heidarpour M, 2010. Application of free vortex theory to estimate discharge coefficient for sharp-crested weirs. Biosystems Engineering 105(3): 423-427.
Buragohain M and Mahanta C, 2008. A novel approach for ANFIS modelling based on full factorial design. Applied Soft Computing 8(1): 609-625.
Carollo FG, Ferro V and Pampalone V, 2017. Testing the outflow process over a triangular labyrinth weir. Journal of Irrigation and Drainage Engineering 143(8): 06017007.
Chanson H and Wang H, 2013. Unsteady discharge calibration of a large V notch weir. Flow Measurement and Instrumentation 29: 19-24.
Ebtehaj I, Bonakdari H and Shamshirband S, 2016. Extreme learning machine assessment for estimating sediment transport in open channels. Engineering with Computers 32(4): 691-704. doi:10.1007/s00366-016-0446-1.
Esmaeilpour L, Farsadizadeh D and Hosseinzadeh Dalir A, 2016. Study of hydraulic properties of labyrinth semi-circular one sided weir. Water and Soil Science- University of Tabriz, 26(1):187-195. (In Persian with English abstract)
Haghiabi AH, Parsaie A and Ememgholizadeh S, 2017. Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System. Alexandria Engineering Journal 57:1773-1782.
Kumar S, Ahmad Z and Mansoor T, 2011. A new approach to improve the discharging capacity of sharp-crested triangular plan form weirs. Journal of Flow Measurement and Instrumentation 22(3): 175-180.
Roushangar K, Alami MT, Majedi Asl M and Shiri J, 2017. Modeling discharge coefficient of normal and inverted orientation labyrinth weirs using machine learning techniques. ISH Journal of Hydraulic Engineering 23(3): 331-340.
Roushangar K, Alami MT, Shiri J and Asl MM, 2018. Determining discharge coefficient of labyrinth and arced labyrinth weirs using support vector machine. Hydrology Research 49(3): 924-938.
Roushangar K, Alami MT, Shiri J and Asl MM, 2017. Determination of discharge coefficient of labyrinth and arced labyrinth weirs by support vector regression method. Water and Soil Science-University of Tabriz 27(1):173-186. (In Persian with English abstract)
Seamons TR, 2014. Labyrinth weirs: a look into geometric variation and its effect on efficiency and design method predictions. Master of Science thesis. Utah State University. USA.
Yang XS, 2010. firefly algorithm, stochastic test functions and design optimization. International Journal of Biological Macromolecules 2(2): 78-84.