برآورد رگبار طرح با استفاده از تئوری مالتی فرکتال در ایستگاه سد گتوند

نوع مقاله: مقاله پژوهشی

نویسنده

دانشگاه آزاد اسلامی واحد زنجان

چکیده

رگبار طرح برای طراحی سازه‌های هیدرولیکی ضروری می‌باشد اما روش­های متداول برآورد آن به علت داشتن پارامترهای زیاد و نیاز داشتن به داده‌های بارش در تداوم‌های مختلف توسط هیدرولوژیست‌ها مورد انتقاد قرار گرفته است. امروزه برای بهبود برآورد رگبار طرح از تئوری فرکتال استفاده می‌گردد.  در این روش تعداد پارامترها کم بوده و تنها می‌توان با اطلاعات داده‌های حداکثر بارش سالانه در تداوم روزانه رگبار طرح را در تداوم و دوره ‌بازگشت مورد نظر برآورد کرد. در این تحقیق تئوری فرکتال برای برآورد رگبار طرح در ایستگاه باران سنجی سد گتوند که در استان خوزستان و جنوب غرب ایران قرار دارد، بکار گرفته شده است. نتایج بدست آمده نشان داد که مدل مونوفرکتال برآورد کمتری از رگبار طرح ارائه می‌دهد اما رگبار طرح بدست آمده از مدل مالتی‌فرکتال انطباق خوبی با داده‌های بارش مشاهده‌ای دارد. 

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Design Storm Using Multifractal Theory in Ghotvan Dam Site

نویسنده [English]

  • MH Noorigheidari
چکیده [English]

 Design storm is required for designing of hydraulic structures but its current estimation methods are criticized by hydrologists since these method need many parameters and requires the rainfall data at different durations. Nowadays fractal theory is used to improve the estimation of design storm which has few parameters and the design storm at different durations and with any return periods is estimated only from annual 1-day maximum rainfall series. In this research, fractal theory was used to estimate the design storm in Ghotvan Dam site. The results showed that momofractal model underestimated the design storm, but the estimated design storm by multifractal model was consistant with the observation data. 

کلیدواژه‌ها [English]

  • Design storm
  • Ghotvan dam site
  • Monofractal
  • Multifractal
Bara M, 2009. Scaling properties of extreme rainfall in Slovakia. Pp. 6. Proceedings of the 11th International Science Conference of PhD Students, VUT Brno (CD).
Burlando P and Rosso R, 1996. Scaling and multiscaling models of depth–duration–frequency curves for storm precipitation. Journal of   Hydrology 187: 45–64.
Garcia–Bartual R and Schneider M, 2001. Estimating maximum expected short-duration rainfall intensities from extreme convective rainfalls. Phys Chem Earth B, 26:675-681.
Gupta VK and Waymire E, 1993. Multifractal properties of spatial rainfall and river flow distributions. J Geophys Res 95 (D3):1999-2009.
Labat D, Mangin A and Ababou R, 2002. Rainfall-runoff relations for karstic springs: multifractal analysis. Journal of Hydrology 256: 176-195.
Malamud BD and Turcotte DL, 2006. The applicability of power law frequency statistics of floods. Journal of hydrology 322:168-180.
Marin APG,  Hornero  FJ and Munoz  JLA,  2008. Universal multifractal description of an hourly rainfall time series from a location in southern Spain. Atmosfera 21(4):347-355.   
Menabde M, Seed A and Pegram G, 1999. A simple scaling model for extreme rainfall. Water Resour Res 35(1): 335–339.
Molnar P and Burlando P, 2005. Preservation of rainfall properties in stochastic disaggregation by a simple random cascade model. Atmospheric Research 77:137-151.
Nhat LM, Tachilawa Y and Takara K, 2006. Establishment of intensity duration frequency curves of precipitation in the monsoon area of Vietnam. Annuals of Disas Prev Inst. Kyoto Univ, No. 49B. Pp: 232-245.
Nhat LM, Tachikawa Y, Sayama T and Takara K, 2007: Regional rainfall intensity duration-frequency relationships for ungauged catchments based on scaling properties. Annuals of Disas Prev Res Inst. Kyoto Univ, No. 50B. Pp: 33–43.
Olsson J, Niemczynowicz J and Berndtsson R, 1993. Fractal Analysis of high resolution time series. Journal of Geophysical Research, 98: 23265-23274.
Pandey G, Lovejoy S and Schertzer D, 1998. Multifractal analysis of daily river flows including extremes for basins of five to two million square kilometers, one day to 75 years. Journal of Hydrology 208:62-81.
Pathirana A, Herath S, 2003. Estimating rainfall distributions at high temporal resolutions using a multifractal model. Hydrology and Earth Sciences 7(5): 668-679.
Schertzer D and Lovejoy S, 1987. Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. Journal of Geophysical Research 92: 9693 9714.
Sherman CW, 1931. Frequency and intensity of excessive rainfall at Boston. Trans ASCE 95:951-960.
Takara K, 2005. Report on data availability and IDF procedures: Situation in Japan. IHP-VI. Technical Document in Hydrology NO 5. Annex Japan country report.
Van Nguyen VTV, 2000. Recent advances in modelling of extreme rainfalls and floods. Pp. 52–59. International European-Asian Workshop on Ecosystems, Hanoi, Vietnam.
Yu PS, Yang TC and Lin CS, 2004. Regional rainfall intensity formulas based on scaling property of rainfall. Journal of Hydrology, 295 (1-4): 108-123.
Zhou X, Persaud N and Wang H, 2005. Scale invariance of daily time series in agricultural watersheds. Hydrol  Earth Sys Sci Discuss 2:1757-1778.