تحلیل مقایسه‌ای نوسانات سطح ایستابی با استفاده از نرم‌افزار GMS و مدل‌های سری‫های زمانی در دشت عجب‌شیر ‬‬‬‬‬‬‬‬‬‬‬‬

نوع مقاله: مقاله پژوهشی

چکیده

پیش‌بینی نوسانات ­سطح آب زیرزمینی، برای برنامه‌ریزی مناسب‌تر به ویژه در مناطق خشک و نیمه‫خشک امری ضروری است. در این تحقیق از داده‌های ارتفاع سطح ایستابی به‌صورت ماهانه، طی دوره‌ آماری 1380 لغایت 1390 دشت عجب‌شیر واقع در شهرستان عجب‌شیر که دارای وسعت 130 کیلومتر مربع است استفاده گردید و از دو روش برای تخمین و پیش‌بینی ارتفاع سطح ایستابی بهره گرفته شده است. از داده‫های سال 1380 تا 1390 جهت تخمین استفاده گردید و ارتفاع سطح ایستابی برای سه سال (1390 تا 1393) پیش‫بینی شد. روش اول حل معادله‌ دیفرانسیل جزئی برای گام‌های زمانی (بصورت ماهانه) متوالی و روش دوم مدل سری‌های زمانی است. روش تفاضلات محدود برای حل عددی معادله‌ دیفرانسیلی استفاده شد، برای این منظور از نرم‌افزار GMS استفاده گردید. مقدار ضریب همبستگی و ریشه متوسط مربعات خطا (Root Mean Square Error) بدست آمده از این روش بین مقادیر مشاهداتی و محاسباتی به‫ترتیب 9/0 و 41/0 متر بدست آمد. مدل (2و3) ARMA بهترین مدل برازش شده برای داده‌های ارتفاع سطح ایستابی به‌دست آمد که مقدار ضریب همبستگی و RMSE بدست آمده از این روش به‫ترتیب 85/0 و 49/0 متر می‌باشد. طبق معیارهای ارزیابی بدست آمده، معادله‌ دیفرانسیل جزئی از دقت بیشتری در مقایسه با سری‌های زمانی برخوردار بود.

کلیدواژه‌ها


عنوان مقاله [English]

A Comparative Analysis of Water Table Oscillations using GMS Software and Time-series Model in Ajabshir Plain

چکیده [English]

Prediction of water table oscillation, especially in arid and semiarid areas is essential for better planning. In this study, monthly data of water table elevation, during the period of 1380 to 1390 for Ajabshir plain with an area of 130 km2 were used by application of two methods to estimate and predict the water table elevation. The date of 1380 to 1390 were used for estimating and the water table elevations were predicted for the three years of 1391 to 1393. The first method is solving partial differential equation for consecutive time steps and the second one is time series model. The GMS software was used for numerical solution of the differential equation by finite difference method. The correlation coefficient value of 0.9 and RMSE value of 0.41 between the estimated and observed amonts of groundwater levels were obtained using this method. The best fitted model for the water table elevation data using time series was ARMA (3, 2), correlation coefficient and RMSE values of this method were 0.85 and 0.49 respectively. According to the evaluation criteria, the partial differential equation method was more accurate than the time series method.

کلیدواژه‌ها [English]

  • Ajabshir
  • Oscillations
  • Partial differential equation
  • Time Series
  • Water table elevation
Ahn H, 2000. Modeling of groundwater heads based on second-order difference time series models. Journal of Hydrology 234(1-2): 82-94.
Anonymous, 1985. Standard guide for application of a solute transport model to a site-specific groundwater pollution.
Cunningham W, 2003.  Environmental Science. 7th ed. McGraw Hill, Colombo, Ohio, 562 pp.
Daliakopoulos IN, Coulibaly P and Tsanis IK, 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology 309: 229-240.
He B, Takasa K and Wang Y, 2008. Numerical simulation of groundwater flow for a coastal plain in Japan: data collection and model calibration. Environmental Geology 55:1745-1753.
Karthikeyan L, Nagesh Kumar D and Graillot D, 2012. Prediction of groundwater levels in the uplands of a tropical coastal riparian wetland using Artificial Neural Networks. Water Resources Management 27(3): 871-883.
McDonald MG and Harbaugh AWJ, 2008. J MODFLOW, A modular three-dimensional finite difference ground water flow model. U.S.Geological Survey, Reston, Virginia, 600p.
Omran El-Sayed E, 2016. A stochastic simulation model to early predict susceptible areas to water table level fluctuations in North Sinai, Egypt. The Egyptian Journal of Remote Sensing and Space Sciences 19:235–257.
Parlange MB, Katul GG, Cuenca RH, Kavvas ML, Nielsen DR and Mata M, 1992. Physical basis for a time series model of soil water content. Water Resources Research 28: 2437-2446.
Rawls WJ, Gish TJ and Brakensiek DL, 1991. Estimating soil water retention from soil physical properties and characteristics. Advances in Soil Science 9: 213–234.
Salas JD and Smith RA, 1981. Physical basis of stochastic models of annual flows. Water Resources Research 17:428-430.
Shirmohammadi B, Vafakhah M, Moosavi V and Moghaddamnia A, 2013. Application of several data-driven techniques for prediction groundwater level. Water Resources Management 27:419-432.
Singh VP, Woolhiser DA, 2002. Mathematical modeling of watershed hydrology. Journal of Hydrologic Engineering 7(4): 270-292.
Sorooshian S and Gupta VK, 1995. Model Calibration. Pp. 23-68. In: Singh VP (eds). Computer Models of Watershed Hydrology. Chapter 2, Water Resources Publications- Colorado.
William F Ames. 1992. Numerical Methods for Partial Differential Equations. 3rd edition, Academic Press, Inc., Boston.
Wong H, Ip WC, Zhang RQ and Xia J, 2007. Non-parametric time series models for hydrological forecasting. Journal of Hydrology 332(3-4): 337-347.
Wu JC, Hu BX, Zhang DX and Shirley C, 2003. A three-dimensional numerical method of moments for groundwater flow and solute transport in anon-stationary conductivity field. Advances in Water Resources 26(11): 1149-1169.