پراکنش مکانی پارامترهای نفوذ آب به خاک در مقیاس ناحیه¬ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس و استادیار پژوهشی مرکز تحقیقات کشاورزی و منابع طبیعی فارس

2 دانشگاه تربیت مدرس

3 دانشگاه شهید چمران اهواز

4 موسسه تحقیقات برنج کشور رشت

چکیده

پراکنش مکانی پارامترهای نفوذ آب به خاک در پهنه­ای به وسعت 4000 هکتار از اراضی دشت کوار واقع در شرق شیراز بررسی شد. بدین منظور، نفوذ آب به خاک با استوانه­های دوگانه در 161 ایستگاه با شبکه‌بندی منظم 500×500 متر اندازه­گیری گردید. جرم ویژۀ ظاهری (BD)، مقدار رطوبت اولیه خاک، درصد شن، سیلت و رس خاک، مقدار کربن آلی، درصد اشباع خاک، EC و pH خاک نیز اندازه­گیری شدند. میان­یابی پارامترهای نفوذ، با روش­های کریجینگ، وزن دادن عکس فاصله و کوکریجینگ، با مدل­های خطی، نمایی، گوسی و کروی انجام گردید. اعتبارسنجی متقاطع با استفاده از آماره‌های میانگین اریب خطاها، میانگین مطلق خطاها، مربع میانگین خطاها و ریشة میانگین مربعات خطاها، انجام و بهترین درون­یاب انتخاب شد. با بهترین روش درون­یاب، نقشة پراکنش مکانی پارامترها تهیه گردید. برآورد ضریب a مدل کستیاکوف به روش کوکریجینگ (مدل کروی) و با استفاده از فاکتور کمکی جرم ویژه ظاهری، با  99/0=R2، اثر قطعه­ای 002/0- و دامنۀ موثر 3002 متر بر روش کریجینگ ارجحیت داشت. توانb مدل کستیاکوف با 97/0=R2،  اثر قطعه­ای 005/0 و دامنۀ موثر 14410 متر  از روش کریجینگ با مدل نمایی حاصل شد. برای برآورد ضریب S مدل فیلیپ، روش کوکریجینگ با مدل کروی و با فاکتور کمکی جرم ویژه ظاهری با 99/0 =R2 و دامنۀ موثر 2973 متر بر روش کریجینگ ارجحیت نشان داد. برآورد ضریب انتقالی مدل فیلیپ به روش کوکریجینگ و مدل گوسی با 996/0=R2، اثر قطعه­ای 0003/0 و دامنه موثر 3862 متر دقّت مناسبی داشت. استفاده از رطوبت اولیۀ خاک، BD، درصد اندازۀ ذرات، درصد اشباع و کربن آلی خاک به عنوان فاکتورهای کمکی تقریباً نتایج قابل قبول برای برآورد پارامترهای نفوذ ارائه دادند.

کلیدواژه‌ها


عنوان مقاله [English]

Spatial Distribution of Infiltration Parameters at Regional Scale

نویسندگان [English]

  • A Karami 1
  • M Homaee 2
  • M Bybourdi 2
  • M Mahmoodian Shushtari 3
  • N Davatgar 4
1
2
3
4
چکیده [English]

Spatial variability of infiltration parameters were investigated in about 4000 ha of Kavar plain, east of Shiraz, Iran. For this purpose, infiltration was measured on a systematic squared grid pattern with 500 by 500 m in 161 sites using double ring infiltrometer. Soil bulk density (BD), initial soil water content, soil texture, organic carbon content (OC), saturation percentage (SP), pH, and EC were also measured. The interpolation of infiltration parameters in non-sampled areas were predicted using kriging, inverse distance weighted, and co-kriging methods. The experimental semi-variograms were fitted to linear, exponential, gaussian, and spherical models. Cross validation method using statistical parameters of MBE, MAE, MSE, and RMSE was used to choose the most accurate interpolation method. The spatial distribution map of parameters was obtained using the best interpolation method. Estimating the coefficientof a in Kostiakov model using co-kriging method (spherical model) and co-factor of BD with R2=0.99, nugget effect of -0.002, and range of 3380 m was superior to kriging method. The power b of  Kosiakov was estimated by exponential mode and kriging method with R2= 0.97, nugget effect of 0.005 and range of 14410 m. To estimate sorptivity parameter (S) of Philip model, the co-kriging method with spherical model and co-factor of BD with R2=0.99 and range of 2973 m was preferred to kriging method. Likewise, estimation of transmissivity parameter of Philip model using co-kriging method (Gaussian model) with R2=0.996, nugget effect of 0.0003, and range of 3862 m showed high accuracy. Using soil moisture content, BD, texture, SP, and organic carbon as co-factors of co-kriging method, resulted in relatively better estimation of infiltration model parameters.

محمدی ج، 1378. مطالعۀ تغییرات مکانی شوری خاک در منطقۀ رامهرمز (خوزستان) با استفاده از نظریۀ ژئواستاتیستیک، 2، کوکریجینگ. مجله علوم و فنون کشاورزی و منابع طبیعی، جلد 3، شمارۀ 2، صفحه­های 1 تا 8.
محمدی ج، 1385. پدومتری (آمار مکانی)، انتشارات پلک.
علی احیایی م و بهبهانی­زاده ع، 1372. شرح روش­های تجزیۀ شیمیایی خاک (چاپ اول). انتشارات موسسۀ تحقیقات خاک و آب. نشریه شماره 893.
Alemi MH, Shahriari MR and Nielson DR, 1988. Kriging and co-kriging of soil water properties. Soil Tech 1: 117-132.
Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Yurco RF and Koropaka AE, 1994. Field scale variability of soil properties in centeral Iowa soils. Soil Sci Soc Am J
 58: 1501-1511.
Dahiya IS, Richter J and Malik RS, 1984. Soil spatial variability: A review. Int Trop Agr 77: 1-102.
Ersahin S, 2003. Comparing ordinary kriging and cokriging to estimate infiltration rate. Soil Sci Soc Am J 67: 1848–1855.
Gupta RK, Rudra RP, Dickinson WT and ElrickDE, 1994. Modelling spatial pattern of three infiltration parameter. Can Agric Eng 36:9-13
Haghighi F, Gorji M, Shorafa M, Sarmadian F and Mohammadi MH, 2010. Evaluation of some infiltration models and hydraulic parameters. Span J Agric Res 8(1): 210-217.
Jensen ME, Swarner LR and Phelan JT, 1987. Improving irrigation efficiencies. Pp. 1120–1142 In:Hagan RM, Haise HR, Edminster TW (eds.). Irrigation of Agricultural Lands. Agron Monogr 11, ASA and SSSA. Madison, WI.
Journel AG and Huijbregts CJ, 1978. Mining Geostatistics, Academic Press. London.
Kostiakov AN, 1932. On the dynamics of the coefficient of water percolation in soils and on the necessity of studying it from a dynamic point of view for the purposes of amelioration. Pp.17–21. Transactions of the Sixth Congress of Inter national Soc Soil Sci. Moscow, Russia.
Lakhankar T, JonesAS, Combs CL, Sengupta M, Vonder Haar TH and Khanbilvardi R, 2010. Analysis of large scale spatial variability of soil moisture using a geostatistical method. Sensors 10: 913-932.
McBratneyAB and Webster R, 1983. Optimal interpolation and isarithmic mapping of soil properties: V. Co-regionalization and multiple sampling strategies J Soil Sci 34: 137-162.
 
Mallants D, Mohanty BP, Vervoort A and Feyan J, 1997. Spatial analysis of saturated hudraulic conductivity in a soil with macropores. Soil Tech 10: 115-131.
 
Mishra SK, Tyagi JV and Singh VP, 2003. Comparison of infiltration models. Hydrol Process 17: 2629-2652.
 
Mishra U, Lal R, Liu D and Van Meirvenne M, 2010. Predicting the spatial variation of the soil organic carbon pool at a regional scale. Soil Sci Soc Am J 74(3): 906-914.
Motaghian HR and Mohammadi J, 2009. Predictive infiltration rate mapping with improved soil and terrain predictors. J Applied Sci 9(8): 1562-1567.
 
Philip JR, 1957. The theory of infiltration: 4. Sorptivity and algebraic infiltration equation. Soil Sci 84: 257-264.
 
Rawls WJ, 1992. Infiltration and soil water movement Pp. 210-217. In: Madmen DR (ed.) Handbook of Hydrology. McGraw-Hill Inc USA.
 
Reynolds WD and Zebchuk WD, 1996. Hydraulic conductivity in a clay soil: Two measurement techniques and spatial characterization. Soil Sci Soc Am J 60: 1679–1685.
 
Rumman N, Lin G and Li J, 2005. Investigation of GIS-based surface hydrological modelling for identifying infiltration zones in an urban watershed. Environ Informatics Archives 3: 315-322.
 
SepaskhahAR, Ahmadi SH and Nikbakht Shahbazi AR, 2005. Geostatistical analysis of sorptivity for a soil under tilled and no-tilled conditions. Soil Till Res 83: 237–245.
 
Harma ML, GanderGA and Hunt CG, 1980. Spatial variability of infiltration in a watershed. J Hydrol 45: 101–122.
 
Sposito G, 1998. Scale Dependence and Scale Invariance in Hydrology. CambridgeUniversity Press, Cambridge, UK.
Swartzendruber D and Youngs EG, 1974. A comparison of physically-based infiltration equations. Soil Sci 117: 165–167.
Theodossiou N and Latinopoulos P, 2006. Evaluation and optimization of groundwater observation networks using the kriging methodology. Environmental Modelling and Software 21: 991–1000.
Uyan M and Cay T, 2010. Geostatistical methods for mapping groundwater nitrate concentrations. Pp. 1-7 3rd International Conference on Cartography and GIS, 15-20 June, Nessebar, Bulgaria.
Vieira SR, Nielsen DR and Biggar JW,1981. Spatial variability of field-measured infiltration rate. Soil Sci Soc Am J 45: 1040–1048.
Vauclin M, Vieira SR, Vachaud G and Nielsen DR, 1983. The use of cokriging with limited field observations. Soil Sci Soc Am J 47: 175–184.