بررسی فشارهای دینامیکی وارد بر صفحه موج نفوذپذیر تحت برخورد امواج منظم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری سازه‌های آبی، دانشگاه تبریز

2 به‌ترتیب دانشیار و استادیار گروه مهندسی آب، دانشگاه تبریز

3 به‌ترتیب استاد و دانشیار گروه عمران-آب، دانشگاه تبریز

4 دانشیار گروه عمران-آب، دانشگاه تبریز

چکیده

برای طراحی مؤثر و کارای یک صفحه موج تخمین دقیق فشار دینامیکی و نیروی موج ضروری می­باشد. این مطالعه به بررسی فشار دینامیکی وارده بر اجزای سازه­ی یک صفحه موج متشکل از لوله­های افقی که با فاصله ثابت کنار هم قرار می‌گیرند، می­پردازد. این صفحه موج می‌تواند برای انتقال و تبادل آب دریا در ناحیه بندری مفید باشد و امکان جذب مؤثر انرژی موج را فراهم نماید. به این منظور آزمایش‌های فیزیکی بر روی صفحه موج تحت برخورد امواج منظم در 3 ارتفاع و 6 پریود از موج با عمق آب ثابت 6/0 متر انجام گرفت. هم‌چنین 3 قطر متفاوت برای لوله­های صفحه موج در نظر گرفته شد. توزیع فشار دینامیکی وارد بر لوله‌های صفحه موج در امتداد عمقی و پیرامون آن توسط مبدل فشار اندازه‌گیری گردید. نتایج نشان داد افزایش تخلخل موجب کاهش تغییرات فشار دینامیکی موج می­گردد و با افزایش ارتفاع موج برخوردی نوسانات فشار برای تخلخل‌های مختلف افزایش می­یابد. هم­چنین بیشینه تغییرات فشار دینامیکی موج در زاویه‌های بیش­تر از 45 درجه ایجاد گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Waves Investigation of Dynamic Pressures on Wave Screen under Regular

نویسندگان [English]

  • N Azam 1
  • F Salmasi 2
  • MA Lotfollahi Yaghin 3
  • J Parsa 2
  • A Mojtahedi 4
1 Ph.D. Student, Dept. of Water Eng., University of Tabriz, Iran
2 Respectively, Assoc. Prof. and Assist. Prof., Dept. of Water Engineering, Tabriz University, Iran
3 Respectively, Prof. and Assoc. Prof, Dept. of Civil Engineering, University of Tabriz, Iran
4 Assoc. Prof, Dept. of Civil Engineering, University of Tabriz, Iran
چکیده [English]

For a cost-effective design of wave screen, an accurate estimation of dynamic pressure and wave force is needed. In This study investigates the dynamic pressure action on elements of wave screen. The wave screen consists of several horizontal pipes with constant distance between them. This wave screen provides convection and interchanges of seawater within the harbor district, and makes available wave energy absorption effectively. The experimens were done on a wave screen under collision of regular waves with 3 heights and 6 periods of waves at a constant water depth of 0.6 m. Also 3 different diameters were considered for wave screen pipes. Dynamic pressures distributions along and around the pipes were measured by the pressure transducers. The results indicated that with increasing the porosity, the pressure difference was decreased and with increasing of the incident wave height, pressure fluctuation for different porosity was increased. Furthermore, the maximum dynamic pressure fluctuation was occurred at the angle more than 45°.

کلیدواژه‌ها [English]

  • Breakwater
  • dynamic pressure
  • Porosity
  • Regular Wave
  • Wave Screen
Alkhalidi M, Neelamani S and Assad AAH, 2015. Wave force and dynamic pressure on slotted vertical wave barriers with an impermeable wall in random wave fields. Ocean Engineering 109 (1): 1–6.
Anandkumar G, Sundar V, Graw KU and Kaldenhoff H, 1995. Pressure and forces on inclined cylinders due to regullar waves. Ocean Engineering 22 (7): 747–759.
Bergmann H and Oumeraci H, 1998. Wave pressure distribution on permeable vertical walls. 26th International Conference on Coastal Engineering. Copenhagen, Denmark, 2042–2055.
Chen XF, Li YC, Wang YX, Dong GH and Bai X, 2003. Numerical simulation of wave interaction with perforated caissons breakwaters. China Ocean Engineering 17(1): 33–43.
Dean RG and Dalrymple RA, 1991. Water wave mechanics for engineers and scientists. World scientific. Delaware University, USA. 371p.
Dhinakaran G, Sundar V, Sundaravadivelu R and Graw KU, 2002. Dynamic pressures and forces exerted on impermeable and seaside perforated semicircular breakwaters due to regular waves. Ocean Engineering 29(15): 1981–2004.
Hall K, 2000. Wave transmission through multi-layer wave screens. M.Sc. thesis at Queen's university, Kingston, Ontario, Canada.
Hughse SA, 1993. Physical Models and Laboratory Techniques in Coastal Engineering. World scientific. Delaware University, USA, 568p.
Huang ZH and Li L, 2011. Hydraulic performance and wave loadings of perforated/slotted coastal structures: a review. Ocean Engineering 38(1): 1031–1053.
Kisacik D, Troch P and Bogaert PV, 2012. Description of loading conditions due to violent wave impacts on a vertical structure with an overhanging horizontal cantilever slab. Coastal Engineering 60(1): 201–226.
Koraim AS, Iskander MM and Elsayed WR, 2014. Hydrodynamic performance of double rows of piles suspending horizontal c shaped bars. Journal of Coastal Engineering 84: 81-96.
Krishnakumar C, Sunder V and Sannasiraj SA, 2010. Pressures and forces due to directional waves on a vertical wall fronted by wave screens. Applied Ocean Research 32 (1): 1-10.
Neelamani S and Sandhya N, 2005. Surface roughness effect of vertical and sloped seawall in incident random wave fields. Ocean Engineering. 32: 395–416.
Reddy MS and Neelamanit S, 1992. Wave transmission and reflection characteristics of a partially immersed rigid vertical barrier. Ocean Engineering 19(1): 313–325.
Sahoo T, Lee MM, and Chwang AT, 2000. Trapping and generation of waves by vertical porous structures. Journal of Engineering Mechanics. 126 (10): 1074-1082.
Shih RS, 2016. Investigation of random wave impact on highly pervious pipe breakwaters. Ocean Research 58 (1): 146–163.
Sorensen RM, 2006. Basic coastal Engineering. Springer Science. Lehigh University, Bethlehem, Pennsylvania. 331p.
Sundar V, Koola PM and Schlenkhoff AU, 1999. Dynamic pressure on inclined cylinders due to freak waves. Ocean Engineering 26 (9): 841–863.
Taqi A, Neelamani S, Al-Khalidi M and Al-Salem K, 2013. Experimental investigation to assess the wave energy dissipation for arrays of vertical slotted barriers. In: Proceedings of the 35th IAHR World Congress. Chengdu, China, A11863, (2), 1–15.
Yagci O, Kirca VSO, Kabdasli MS, Celik AO, Unal NE and Aydingakko A, 2006. An experimental model application of wavescreen: dynamic pressure, Water particle velocity, and wave measurements. Ocean Engineering 33(1): 1299-1321.