مدل سازی زمانی تراز آب زیرزمینی با استفاده از روش‌های پایه تحلیل سری‌‌های زمانی (مطالعه موردی: دشت اردبیل)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده جغرافیا و برنامه ریزی، دانشگاه تبریز

2 استادیار گروه اقلیم شناسی، دانشکده جغرافیا و برنامه ریزی، دانشگاه تبریز

3 استادیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

چکیده

در بیشتر مناطق، منابع آب زیرزمینی سهم عمده­ای در تأمین نیازهای آبی در بخش­های کشاورزی، شرب و صنعت ایفا می­نمایند. محدوده مطالعاتی اردبیل دارای وسعت 7/4804 کیلومترمربع بوده و وسعت دشت اردبیل در این محدوده 820 کیلومترمربع می‌باشد. این آبخوان از طریق نفوذ مستقیم ریزش‌های سطحی، آب برگشتی از مصارف کشاورزی، شرب و صنعت و همچنین ورودی‌های زیرزمینی تغذیه و از طریق برداشت آب زیرزمینی برای مصارف مختلف و نیز خروجی زیرزمینی تخلیه می‌گردد. در این پژوهش، ابتدا روش­های پایه تحلیل سری­های زمانی شامل مدل­های خودبرگشتی(AR)، میانگین متحرک (MA) و ترکیبی از خودبرگشتی و میانگین متحرک (ARMA) بر روی داده­ها اجرا شده و با استفاده از آزمون­های ضریب آکائیک و توابع خودهمبستگی بهترین مدل انتخاب شد. سپس با توجه به همین آزمون­ها و ضرایب، ملاحظه گردید که مدل AR(2) نتایج بهتری نسبت به سایر مدل­ها دارد. در نهایت با استفاده از همین مدل، برای دوره زمانی سی ساله یک پیش­بینی انجام شد. نتایج حاصل از مقادیر پیش‌بینی‌شده به‌وسیله سری­زمانی، نشان می‌دهد که در صورت ثابت ماندن الگوی مصرف و هم‌چنین عدم تغییرات در روند تغذیه سفره در طی سی سال آینده با کاهش حدود 11 متری نسبت به وضعیت فعلی سطح سفره مواجه خواهیم شد. با توجه به محدودیت منابع و افت سطح ایستابی و نیز حساسیت ویژه این منطقه در تأمین آب شرب در سال‌های آینده، تصمیم‌گیری برای مدیریت آب زیرزمینی در این محدوده الزامی است.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling temporal of groundwater level using basic techniques of time series analysis (Case Study: Ardabil Plain)

نویسندگان [English]

  • J Jafarzadeh 1
  • H Rostamzadeh 2
  • E Asadi 3
1 M.sc student of Remote Sensing and GIS, School of Geography and Planning, University of Tabriz
2 Assist. Prof., Dept. of Geography and Planning, University of Tabriz
3 Assist. Prof., , Dept. of Water Engineeringr, Faculty of Agricalture, University of Tabriz, Iran
چکیده [English]

In most areas, groundwater resources play a major role in water supply of the needs in parts of agriculture, drinking and industry. The scope of studied area of Ardebil is 4804.7 square kilometers and the extent of Ardebil plain in this region is 820 square kilometers. This aquifer feeds through the direct infiltration of surface downfalls, returning water from agriculture, drinking and industry expenditures and also the underground drains. In this study, the basic methods of the analysis of time series includes models of autoregressive (AR), moving average (MA) and the combination of autoregressive and moving average (ARMA) were implemented on the data and the best model was chosen by using the test of Akaike coefficient data autocorrelation functions. Then, it was observed the results of model AR (2) are better than other models according to these tests and coefficients. Finally, a prediction was accomplished for a period of thirty years by using the same model. The results of the predicted values by time series shows a reduction of approximately 11 meters into the current situation of water table of aquifer in the case of constant consumption patterns and also without change in the procedure of the feeding in the aquifer during the next thirty years. The decision to manage the groundwater in this area is required, due to the restriction of the resources and the drawdown of water table and the particular sensitivity of this region about drinking water supply in the coming years.

کلیدواژه‌ها [English]

  • Ardebil
  • Groundwater
  • Predicting
  • Time Series
  • Water Table
Aalami M.T, Dinpajhouh Y and and Dashvar Vosoughi F, 2011. The Effect of Drought on Groundwater Alignment in Two Decades (Case Study: Ardebil plain). Journal of Water and Soil Science. Volume 21, Number 4, pages 165 to 179.
Bozorg Nia A, 1997. Analysis of time series and prediction. Mashhad. Astan Quds Razavi Publishing House.
Anonymous, 2008. Water Resources of Ardabil City, Department of Management Planning and Improvement, Ardebil Regional Water Authority.
Anonymous, 2009. Summary of Climate Image, Department of Studies and Economic, Climate and Water Resources of Ardabil Province.
Anonymous, 2014. Detailed results of the Population and Housing Census 2012 - Ardebil County, Planning Deputy, Office of Statistics and Information, Ardabil Governorate.
Rahmani A and Sadehi M, 2004. Prediction of ground water level changes in Hamedan-Bahar plain with time series model. Water and Wastewater Journal, No. 51, pages 42 to 47.
Sattari M and Shamsi Sosahab R, 2014. Estimation of Groundwater Level in Ardebil Plain Using Artificial Neural Networks. Pages 1-7. 11th National Students Conference. University of Urmia, Urmia, September 11-13.
Fatemi Ghomi M, 1994. Forecasting and analyzing time series (translation). Amir Kabir University of Technology Publication (Tehran Polytechnic).
Meshkani M., 1992. Time series analysis: prediction and control. Tehran. Shahid Beheshti University Press.
Niroumand H.A and Bozorg Nia A, 1991. An Introduction to Time Series Analysis (translation). Ferdowsi University of Mashhad.
Ahmadi SH and Sedghamiz A, 2007. Geostatistical analysis of spatial and temporal variations of groundwater level. Environmental Monitoring and Assessment, 129, 277-294.
 Daniel EB, Camp JV, LeBoeuf EJ, Penrod JR, Dobbins JP and Abkowitz MD, 2011. Watershed Modeling and its Applications: A State-of-the-Art Review. Vanderbilt University, VU Station B 351831, Nashville, Tennessee 37235-1831, USA. The Open Hydrology Journal 5: 26-50.
Faruk , 2010. A hybrid neural network and ARIMA model for water quality time series prediction. Water Resources Research Center, Adnan Menderes University, Aydın, Turkey.  23(4): 586–594.
Gottardi G and Venutelli M, 2007. Mathematical development and verification of a non-orthogonal finite volume model for groundwater flowapplications, Advances in Water Resources 30(1): 29-42.
Roger JS, Sun CT and Mizutani E, 1997. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Englewood Cliffs, Upper Saddle River, NJ: Prentice Hall International.
 
 Laux P, Vogl S, Qiu W, Knoche HR, and Kunstmann H, 2011. Copula-based statistical refinement of precipitation in RCM simulations over complex terrain. Hydrology and Earth System Sciences 15: 2401–2419.
Manzini G and Ferraris S, 2004. Mass-conservation finite volume methods on 2-D unsaturated grids for the Richards' equation, Advances in Water Resources 27(12): 1199-1215.
Shaghaghian MR, 2010. Prediction of dissolved oxygen in rivers using a wang-mendel method – case study of Au Sable River, World Academy of Science, Engineering and Technology 62: 795-802.
Wang LX and Mendel JM, 1992. Generating fuzzy rules by learning from examples, IEEE Transactions on Systems, Man, and Cybernetics 22(6): 1414-1427.
Wang H and Anderson MP, 2007. Introduction to Groundwater Modeling: Finite Difference and Finite Element Methods, Freeman Inc., San Francisco.
Wang WC, Chau KW, Xu DM, and Chen XY, 2015. Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resources Management 29(8): 2655-2675.
Yusof NAU, Mat MZ and Khalid N, 2015. Feasibility study of water quality trend in long term time series for Langat River. Journal of Scientific Research and Development 2(14): 33-37.
Salas, J.D,1993, Anlysis and Modeling of Hydrologic Time Series, Chapter 19(72 p) in the McGraw Hill Handbook of Hydrology, D.R Maidment Editor.