توسعه و ارزیابی چند مدل اشتقاقی برای مدل‌سازی تنش توأم کمبود آب و نیتروژن

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری تخصصی، دانشگاه آزاد اسلامی، واحد علوم وتحقیقات، دانشکده کشاورزی و منابع طبیعی، گروه مهندسی آب، تهران، ایران

2 دانشیار، دانشگاه آزاد اسلامی، واحد علوم وتحقیقات، دانشکده کشاورزی و منابع طبیعی، گروه مهندسی آب، تهران، ایران

3 استاد، گروه خاکشناسی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

4 دانشیار، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

چکیده

آب و نیتروژن مهم‌ترین عوامل محدود کنندۀ تولید محصولات کشاورزی در نواحی خشک و نیمه‌خشک هستند. بنابراین تعیین مقدار جذب آب بوسیله گیاه تحت شرایط تنش توأم آب و کمبود نیتروژن می‌تواند در مدیریت آب در مزرعه به‌ویژه صرفه‌جویی در مصرف آب و کود با هدف حداکثر عملکرد محصول و نهایتاً حداکثر سود اقتصادی نقش کلیدی ایفا نماید. هدف از انجام این پژوهش، ارائه برخی مدل‌های اشتقاقی جذب آب در شرایط تنش توأم کمبود آب و نیتروژن و نهایتاً واسنجی پارامترهای آنها برای گیاه ریحان بود. بدین منظور، مدل‌های اشتقاقی از ترکیب مدل میچرلیخ- بال (MB) برای تنش کمبود نیتروژن و مدل‌های فدس و همکاران (F)، ون‌گنوختن (VG)، نمایی پیشنهادی (EXP) و همایی و همکاران (H) برای تنش کم‌آبی و مدل لیبیگ- اسپرینگل (LS) برای تنش کمبود نیتروژن و مدل‌ فدس و همکاران (F) برای تنش کم‌آبی ارائه و مورد ارزیابی قرار گرفتند. این آزمایش گلدانی با چهار سطح مختلف آب آبیاری شامل 120، 100، 80، و 60 درصد نیاز آبی گیاه و چهار سطح کود نیتروژن شامل 100، 75، 50 و صفر درصد نیاز کودی بر اساس آزمون خاک در 3 تکرار انجام شد. نتایج نشان داد که از میان مدل‎‌های ارزیابی شده، به استناد آماره‌های محاسبه شده به‌ترتیب مدل‌های اشتقاقی MB و نمایی پیشنهادی (MB-EXP)، MB و فدس و همکاران (MB-F)، MB و ون‌گنوختن (MB-VG) و همچنین MB و همایی و همکاران (MB-H) بهترین انطباق را با داده‌های اندازه‌گیری ‌شده داشتند.

کلیدواژه‌ها


عنوان مقاله [English]

Developing and Evaluating some Derived Models for Modeling Simultaneous Water and Nitrogen Deficit Stress

نویسندگان [English]

  • M Sarai Tabrizi 1
  • H Babazadeh 2
  • M Homai 3
  • F Kaveh 2
  • M Parsinejad 4
چکیده [English]

Water and nitrogen are the most important effective limiting factors for agricultural production in arid and semi-arid regions. Therefore, determining the amount of root water uptake under simultaneous water and nitrogen deficit stress conditions can play a key role in farm water management particularly in saving water and fertilizer with the purpose of maximum crop yield and consequently the maximum economical profit. The objective of this research was to introduce and evaluate derived models under simultaneous water and nitrogen deficit stress conditions and consequently calibrating their parameters for basil. In order to do so, derived models from the composition of Mitscherlich-Baule (MB) for nutrients stress conditions and models of Feddes et al., (F), van Genuchten (VG), recommended exponential (EXP) and Homaee et al., (H) for water stress conditions and also the composition model of Liebig-Sprengel (LS) for nutrients and model of Feddes et al., (F) for water stress conditions were presented and evaluated. This experiment was conducted with four irrigation water quantity levels including 120, 100, 80, and 60 percent of crop water requirement and four nitrogen fertilizer levels including 100, 75, 50, and zero percent of fertilizer requirement based on soil fertility test with three replicates. The results indicated that among the evaluated models, based on calculated statistical indices, the derived model of MB-EXP, MB-F, MB-VG, and MB-H had the best fitting on the measured data respectively.

کلیدواژه‌ها [English]

  • Combined stresses
  • Water Stress
  • Recommended derived models
  • Nitrogen
اسماعیلی ا، همایی م و ملکوتی م ج، 1384. اثرات متقابل شوری محلول و کود ازتی بر رشد و ترکیبات سورگوم. علوم خاک و آب، جلد 19، شماره 1، صفحه‌های 126 تا 143.
عباسی ف، چوگان ر، علیزاده ح و لیاقت ع م، 1391. بررسی اثر کود آبیاری جویچه‌ای بر کارایی مصرف کود و آب، عملکرد و برخی صفات ذرت دانه‌ای. مجله تحقیقات آب و خاک ایران، جلد 43، شماره4، صفحه‌های 375 تا 385.
کریمی ا، معز اردلان‌ م، لیاقت ع م و همایی م، 1386. اثر کود-آبیاری بر اجزای عملکرد و کارآیی مصرف آب. مجله علوم و صنایع کشاورزی، جلد 21، شماره 11، صفحه‌های 11 تا 22.
کریمی ا، همایی م، لیاقت ع م و معز اردلان م، 1384. یکنواختی توزیع آب و کود در سیستم آبیاری قطره‌ای- نواری. مجله پژوهش کشاورزی، جلد 5، شماره 2، صفحه‌های 53 تا 67.
کیانی ع، همایی م و میر لطیفی م، 1385. ارزیابی توابع کاهش عملکرد گندم در شرایط توأم شوری و کم‌آبی. مجله علوم خاک و آب، جلد 20، شماره 1، صفحه‌های 73 تا 83.
واعظی ع، همایی م و ملکوتی م ج، 1381. اثر کودآبیاری بر کارآیی مصرف کود و آب در ذرت علوفه‌ای. مجله علوم خاک و آب، جلد 16، شماره 2، صفحه‌های 152 تا 160.
همایی م، 1381. واکنش گیاهان به شوری. انتشارات کمیته ملی آبیاری و زهکشی ایران، شماره نشر 58، 97 صفحه.
Black C A, 1993. Soil fertility evaluation and control. Lewis Publisher, Boca Raton, FL.
Cardon G E and Letey J, 1992. Plant water uptake terms evaluated for soil water and solute movement models. Soil Science Society American Journal 32: 1876–1880.
Dirksen C, Kool JB, Koorevaar P and van Genuchten M Th, 1993. HYSWASOR: simulation model of hysteretic water and solute transport in the root zone. In: Russo, D., Dagan, G. (Eds), Water Flow and Solute Transport in Soils. Springer, Berlin, pp. 99-122.
Esmaili E, Asadi Kapourchal S, Malakouti M J and Homaee M, 2008. Interactive effect of salinity and two nitrogen fertilizers on growth and composition of sorghum. Plant, Soil and Environment 56(12): 537-546.
Feddes R A, Kowalik P and Zarandy H, 1978.Simulation of Field Water Use and Crop Yield.Pudoc.Wageningen.The Netherlands Saline water in supplemental irrigation of wheat and barley under rainfedagriculture. Agricultural Water Management 78: 122-127.
Gardner WR, 1991. Modeling water uptake by roots. Irrigation Science 12: 109–114.
Homaee M, 1999. Root water uptake under non-uniform transient salinity and water stress. PhD dissertation, Wageningen Agricultural University, The Netherlands, 173 pp.
Homaee M, Dirksen C and Feddes R A, 2002a. Simulation of root water uptake. I. Non-uniform transient salinity using different macroscopic reduction functions. Agricultural Water Management 57: 89-109.
Homaee M, Dirksen C and Feddes R A, 2002b. Simulation of root water uptake. II. Nonuniform transient water stress using different reduction functions. Agricultural Water Management 57: 111-126.
Jacobsen O J and Schjonning P, 1993. A laboratory calibration of time domain reflectometry for soil water measurement including effects of bulk density and texture. J. of Hydrology 5: 147–157.
Liua W Z and Zhang X, 2007. Optimizing water and fertilizer input using an elasticity index: a case study with maize in the loess plateau of China. Field Crops Research 100 (2–3): 302–310.
Loague K and Green R E, 1991. Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of Contaminant Hydrology 7: 51-73.
Miller J D and Gaskin G, 1997. The development and application of the theta probes soil water sensor. MLURI. Technical note, 312 pp.
Oikeh SO, Kling J G and Okoruwa A E, 1988.Nitrogen fertilizer management effects on maize grain quality in the West African Moist Savanna. Journal of Crop Science 38: 1056-1061.
Pandey RK, Maranwille JW and Admou A, 2000.Deficit irrigation and nitrogen effects on maize in a Sahelian environment. I. Grain yield and yield components. Agricultural Water Management 46 (1): 1–13.
Pang XP and Letey J, 1998. Development and evaluation of ENVIRO-GRO, an integrated water, salinity, and nitrogen model. Soil Science Society American Journal 62 (5): 1418–1427.
Richards L A, 1931. Capillary conduction of liquids in porous mediums.Physics. 1: 318-333.
Robinson D A, Gardner C M K and. Cooper J D, 1999. Measurement of relative permittivity in sandy soils using TDR, capacitance and theta probes: comparison, including the effects of bulk soil electrical conductivity. J. of Hydrology 223: 198–211.
Tiercelin JR. and Vidal A, 2006. Traite´ d’Irrigation, 2nd edition. Lavoisier edition. 1266 pp.
Van Genuchten M Th, 1987. A numerical model for water and solute movement in and below the root zone. Research Report. US Salinity Laboratory, Riverside, CA.
Zand-Parsa Sh and Sepaskhah A L, 2001. Optimal applied water and nitrogen for maize. Agricultural Water Management 52(1): 73–85.