تأثیر پیش‌تیمار بذر با باکتری‌های محرک رشد بر رشد رویشی، صفات بیوشیمیایی و فیزیولوژیکی گیاه بامیه (Abelmoschus esculentus L.) تحت تنش دمای پایین

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل

2 دانشیار گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل

3 استادیار گروه علوم و مهندسی خاک، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل

4 استادیار گروه باعبانی، دانشکده کشاورزی، دانشگاه رامین، خوزستان

5 استادیار گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد

6 استادیار گروه خاکشناسی، دانشکده کشاورزی، دانشگاه ولی‌عصر (عج) رفسنجان، رفسنجان

7 استادیار گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل

چکیده

در این بررسی آزمایشی در دانشگاه محقق اردبیلی به­صورت طرح کاملا تصادفی با سه تکرار در سال 1393 اجرا گردید. تیمارهای آزمایشی شامل پیش‌تیمار بذر با سویه­های1، 10، 19 و 150 باکتری سودوموناس پوتیدا، سویه­های 69 و 159 باکتری سودوموناس فلورسنس، تیمار تلفیقی باکتری سودوموناس پوتیدا سویه 19 و باکتری سودوموناس فلورسنس سویه 159 و تیمار شاهد (بدون تلقیح) بود. گیاهان تا مرحله شش­برگی در گلخانه نگهداری شدند، سپس روزانه به­مدت 270 دقیقه در معرض تنش دمای پایین (دمای هشت درجه‌ سلسیوس) قرار گرفتند و سرمادهی روزانه به‌مدت پنج روز ادامه یافت. پس از اعمال تنش سرما، طول و وزن خشک گیاهچه، رنگیزه­های فتوسنتزی، کربوهیدرات کل، پرولین، ثبات غشا، مقدار پروتئین، فعالیت آنزیم­های کاتالاز، پلی­فنل­اکسیداز و پراکسیداز اندازه­گیری شد. نتایج حاصل از این پژوهش نشان داد که پیش‌تیمار با باکتری­های محرک رشد باعث افزایش طول و وزن خشک گیاهچه، صفات بیوشیمیایی و فیزیولوژیکی شد. سویه­های باکتری سودوموناس پوتیدا و سودوموناس فلورسنس از طریق افزایش پرولین، میزان کربوهیدرات محلول، و فعالیت آنزیم­های آنتی­اکسیدانی باعث حفظ یکپارچگی غشای سلول گردیده و در نتیجه خسارت به غشا کاهش یافت. بیشترین بهبود پیش‌تیمار جهت کاهش اثرات تنش دمای پایین از تلقیح بذور با سویه 150 باکتری سودوموناس پوتیدا و سویه 69 باکتری سودوموناس فلورسنسحاصل شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Seed Priming with Plant Growth Promoting Bacteria on Some Physiological and Biochemical Characteristics of Okra (Abelmoschus esculentus L.) Seedlings under Low Temperature Stress

نویسندگان [English]

  • S Bahadori 1
  • B Esmaielpour 2
  • AA Soltani Toolarood 3
  • M Heidari 4
  • S Khorram del 5
  • P Abbaszadeh 6
  • P Shiekhzadeh 7
چکیده [English]

In this study an experiment was conducted based on completely randomized design in research greenhouse of Mohaghegh Ardabili University in 2014. Treatments consisted of inoculated seeds by Pseudomonas putida strains 1, 10, 19 and 150, Pseudomonas fluorescence strains 69 and 159, combination of strain 19 from Pseudomonas putida and strain 69 from Pseudomonas fluorescence and control (without inoculation). Plants were kept in greenhouse until six-leaf stage then exposed to low temperature stress (8 ºC temperature for 270 minutes during five consecutive days). After exposing plants to low temperature stress, traits such as seedling height and dry weight, photosynthetetic pigments, total carbohydrates, proline, membrane integrity, protein amount, catalase, peroxidase and poly phenol oxidase enzymes were measured. Results indicated that primingof okra seeds with plant growth promoting bacteria increased seedling height and dry weight, physiological and biochemical characteristics. Pseudomonas putida and Pseudomonas fluorescence increased cell membrane integrity via increase in leaf proline content, total soluble carbohydrates and antioxidant enzymes. The greatest promotion of seedling growth under low temperature was obtained by priming of seeds with Pseudomonas putida strain 150 and of Pseudomonas fluorescence strain 69.

کلیدواژه‌ها [English]

  • Antioxidant enzymes
  • Proline
  • Pseudomonas fluorescence
  • Pseudomonas putida
جعفری ر، منوچهری کلانتری خ و ترک­زاده م، 1385. بررسی اثرات پاکلوبوترازول بر افزایش مقاومت به سرما در نهال‌های گوجه­فرنگی. مجله زیست شناسی ایران، جلد 19، صفحه­های 290 تا 298.
دانشور م­ح، .1387 پرورش سبزی. انتشارات دانشگاه شهید چمران، اهواز.
طاهرخانچی آ، اکبری غ­ع، مدرس ثانوی ع­م و قربانی جاوید م، 1392. ارزیابی تأثیرات کودهای زیستی بر عملکرد دانه و برخی خصوصیات فیزیولوژیک و بیوشیمیایی گیاه سویا تحت تنش کم آبی. مجله به‌زراعی کشاورزی، جلد 3، صفحه­های 141 تا 153.
عموآقایی ر، مستاجران ا و امتیازی گ، 1384. اثر آزوسپیریلوم و اسیدیته قلیایی آب آبیاری بر عملکرد دانه و میزان پروتئین ارقام زراعی گندم. مجله زیست­شناسی، جلد 18، صفحه­های 248 تا 256.
قربانلی خ، ساطعی م و مقیسه ا، 1382. اثر مقادیر متفاوت شوری بر فعالیت آنزیم­های کاتالاز، پراکسیداز و نیترات ردوکتاز در ریشه و برگهای ارقام کلزا. مجله پژوهش و سازندگی، جلد 43، صفحه­های 153 تا 160.
Abbaszadeh P, Saleh-Rastin N, Asadi-Rahmani H, Khavazi K, Soltani A, Shoary-Nejati AR and Miransari M, 2010. Plant growth-promoting activities of fluorescent pseudomonads, isolated from the Iranian soils. Acta Physiologiae Plantarum 32: 281–288
Ahmad F, Ahmad I and Khan M, 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth-promoting activities. Microbiology Research 163:173-181.
Allen DJ and Ort DR, 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science 6(1): 36-41.
Aminigo ER and Akingbala JO, 2004. Nutritive composition and sensory properties of ogi fortified with okra seed meal. Journal of Applied Science and Environment 8(2): 23-28.
Arnone DT, 1949. Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris L. Plant Physiology 24: 1-15.
Ashraf M and Foolad MR, 2007. Roles of glycine betaine and proline in improvingplant abiotic stress resistance. Environ. Experimental Botany 59: 206-216.
Ashraf M and Foolad MR, 2005. Pre-sowing seed treatment-ashotgun approach to improve germination plant growth, and crop yield under saline and non-saline conditions. Advances in Agronomy 88: 223-271.
Bakalova S, Nikolova A and Nedeva D, 2004. Isoenzyme profiles of peroxidase, catalase and superoxide dismutase as affected by dehydration stress and ABA during germination of wheat seeds. Journal of Plant Physiology 30: 64-77.
Bates LS, 1973. Rapid determination of free proline for water stress studies. Plant and Soil 39: 205-207.
Bhattacharjee S, 2005. Reactive oxygen species and oxidative burst: Role in stress, senescence and signal transduction in plants. Current Science 89: 1113-1121.
Chen Y, Zhang M, Chen T, Zhang Y and An L, 2006. The relationship between seasonal changes in anti-oxidative system and freezing tolerance in the leaves of evergreen woody plants of Sabina. South African Journal of Botany 72: 272-279.
Esfandiari E, Shekari F and Esfandiari M, 2007. The effect of salt stress on antioxidant enzymes' activity and lipid peroxidation on the wheat seedling. Journal of Notulae Botanica Horticulture Agribotanica 35: 48-56.
Glick BR, 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41: 109-117
Gravel V, Hani A and Tewddell RJ, 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biology and Biochemistry 39: 1968-1977.
Grichko VP and Glick BR, 2001. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiology and Biochemistry 39: 11-17.
Gusta LV, Trischuk R and Weiser CJ, 2005. Plant cold acclimation: the role of abscisic acid. Journal of Plant Growth Regulation 24: 308-318.
Han HS and Lee KD, 2005. Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of Lettuce under soil salinity. Research Journal of Agriculture and Biological Science 1: 210-215.
Hsanuzzaman M, Nahar K and Fujita M, 2013. Extreme temperature responses, oxidative stress and antioxidant defense in plants. Pp 169-205. In: vahdati K and Leslie C (eds). Abiotic Stress - Plant Responses and Applications in Agriculture. InTech. Rijeka.
Irigoyen JJ, Emerich DW and sanchez-Diaz M, 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa L.) plants. Plant Physiology 84: 55-60.
Janda T, Kosa EL, Szalai G and Paldi E, 2005. Investigatin of antioxidant activity of maize during low temperature stress. Journal of Plant Physiology 49: 53-54.
Kara M and Mishra E, 1976. Catalse, peroxidase and polyphenol oxidase activities rice leaf senescence. Plant Physiology 57(2): 315-319.
Kloepper JW, Lifshitz R, Zablotowicz RM, 1989 Free-living bacterial inocula for enhancing crop productity. Trends Biotechnology 7: 39–43.
Kohler J, Antonio Hernandes J, Caravaca F and Roldan A,2009. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environmental and Experimental Botany 65: 245-252.
Marius S, Octavita A, Eugen U, and Vlad A, 2005. Study of a microbial inoculation on several biochemical indices in sunflower (Helianthus anuus L.). Genetics and Molecular Biology 12(2): 11-17.
Marsh L, 1992. Emergence and seedling growth of okra genotypes at low temperatures. Hortscience 27(12): 1310-1312.
Nandakumar R, Babu S, Viswanathan R, Raguchander T and Samiyappan R, 2001. Induction of systemic resistance in rice against sheath blight disease by plant growth promoting rhizobacteria. SoilBiology and Biochemistry 33: 603–612.
Nemeth M, Janda T, Hovarth E, Paldi E, and Szali G, 2002. Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Science 162: 569-574.
Orabi SA, Salman SR and Shalaby, AF, 2010. Increasing resistance to oxidative damage in cucumber (Cucumis sativus L.) plants by exogenous application of salicylic acid and paclobutrazol. World Journal of Agricultural Science 6: 252-259.
Pan Y, Wu LJ and Yu ZL, 2006. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis fisch). Plant Growth Regulation 49: 157-165.
Paul D and Sarma YR, 2006. Plant growth promoting rhizobacteria (PGPR) mediated root proliferation in black pepper (Piper nigrum L.) as evidenced through GS root software. Archives of Phytopathology and Plant Protection 39: 1-4.
Pennycooke JC, Cox S and Stushnoff C, 2004. Relatioship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petinia hybrida). Journal of Environmental and Experimental Botany 53: 225-232.
Rahimizadeh M, Habibi D, Madani H, Mohammadi H, Mehraban A and Sabet AM, 2007. The effect of micronutrients on antioxidant enzymes metabolism in sunflower (Helianthus annuus L.) under drought stress. Journal Helia 47: 167-174.
Redmann RE, Haraldson J and Gusta LV, 1986. Leakage of UV-absorbing substances as a measure of salt injury in leaf tissue of woody species. Physiologia Plantarum 67: 87–91.
Saleem M, Arshad M, Hussain S and Bhatti AS, 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology and Biotechnology 34: 635–648.
Seppanen MM, 2000. Characterize of freezing tolerance in Solanum commersonii(dun.) with special reference of the relationship between and oxidative stress. University of Helsinki Department of Production Section of Crop Husbandry 56: 4-44.
Tasgin E, Atici O, Nalbantoglu B and Petrova L, 2006. Effects of salicylic acid and cold treatment on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. Journal of Phytochemistry 67: 710-715.
Verslues PE, Agrawal M, Katiyar-Agrwal S, Zhu J and Zhu JK, 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant Journal 45: 523-539.
Yadeghari LZ, Heidari R and Carapetian J, 2008. The influence of cold acclimation on proline, malondialdehyd (MDA), Total protein and pigments contents in soybean (Glycine max) seedlings Research Journal of Biological Sciences 3(1): 74-79.
Yilldirim E, Turan M, Donmez MF, 2008. Mitigation of salt stress in radish (Raphanus Sativus L.) by plant growth promoting rhizobacteria. Romanian Biotechnological Letters 13(5): 3933-3943. 
Yong Z, Hao-Ru T and Ya L, 2008. Variation in antioxidant enzyme activities of two strawberry cultivars with short-term low temperature stress. Journal of Agricultural Sciences 4: 456-462.
Zahir ZA, Arshad M and Frankenberger WT, 2004. Plant growth promoting rhizobacteria: Application and perspectives in agriculture. Advances in Agronomy 81: 97-167.
Zhu JK, 2001. Cell signaling under salt, water and cold stresses. Plant Biology 4: 401-406.