بهبود تخمین نقاط شاخص منحنی رطوبتی با استفاده از داده‌های سنجش از دور و به‌کارگیری شبکه‌های بیزی و عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم خاک، دانشکده کشاورزی دانشگاه تبریز

2 استاد گروه خاکشناسی، دانشکده کشاورزی، دانشگاه تبریز

3 دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

4 دانشیار گروه خاکشناسی، دانشکده کشاورزی، دانشگاه تبریز

5 استادیار گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامه‌ریزی، دانشگاه تبریز

6 عضو هیأت مرکز تحقیقات کشاورزی استان آ- شرقی

چکیده

با پیشرفت فنآوری های سنجش از دور اخیرا تلاش­های وسیعی در بکارگیری داده های حاصل از این فنآوری برای برآورد ویژگی های سخت وصول خاک صورت گرفته است. در این مطالعه با افزودن اطلاعات مربوط به پوشش گیاهی حاصل از تصاویر ماهواره­ای (SAVI) و اطلاعات رقومی ارتفاع (DEM) به متغیرهای حاصل از اندازه­گیری­های زمینی، امکان بهبود توابع انتقال (PTFs) برای تخمین سه نقطه منحنی رطوبتی PWP ,FC ,θs بررسی گردید. در این پژوهش 176 نمونه از استان­های آذربایجان شرقی و گیلان مشتمل بر10 کلاس بافتی تهیه گردید. توزیع اندازه ذرات، جرم مخصوص ظاهری و حقیقی، تخلخل کل، ماده آلی، درصد منافذ ریز و درشت، درصد آهک،EC  وpH، میانگین هندسی و انحراف استاندارد هندسی قطر خاکدانه­ها، رطوبت در مکش یک کیلوپاسکال، SAVI و DEM به­عنوان ورودی توابع انتقالی مورد استفاده قرار گرفتند. به­منظور پیش­بینی سه نقطه پتانسیلی از توابع انتقالی با اساس شبکه بیزی و عصبی استفاده شد. مدل­های ایجاد شده با استفاده از آزمون مرگان-گرنجر-نیوبلد (MGN) و ریشه میانگین مربعات خطا (RMSE) برای داده­های مشاهده­ای و پیش­بینی­شده ارزیابی شدند. این تحقیق بهبود در توانایی توابع انتقالی به منظور برآورد سه نقطه از منحنی رطوبتی (بر اساس RMSE) هنگامی که از خصوصیات حاصل از اندازه­گیری­های زمینی، توپوگرافی و پوشش گیاهی در مقایسه با زمانی که تنها از خصوصیات حاصل از اندازه­گیری­های زمینی به­عنوان ورودی استفاده می­شود، تأیید می­کند. مقایسه روش شبکه بیزی و شبکه عصبی مصنوعی نشان داد شبکه بیزی در تخمین توابع انتقال سه نقطه از منحنی رطوبتی در مقایسه با شبکه عصبی از اعتبار و اطمینان بالاتری در برآورد برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Improved Index Points of Soil Moisture Retention Curve Estimation Using Remote Sensing Data and the Use of Bayesian Networks and Artificial Neural Network

نویسندگان [English]

  • M Sabri 1
  • MR Neyshabouri 2
  • MA Ghorbani 3
  • F Shahbazi 4
  • KH Valizadeh Kamran 5
  • A Farajnia 6
چکیده [English]

With advances in remote sensing technology, vast efforts have been carried out recently for predicting difficult-to measure soil properties. This study explores the use of information on vegetation cover from satellite images (SAVI) and digital elevation model (DEM) in addition to pedologic attributes to develop pedotransfer functions (PTFs) for estimating three  coefficients of soil moisture retention curve (PWP, FC, θs). For this purpose 176 samples from East Azarbyjan and Guilan provinces were collected consisting of 10 various texture classes. Particle size distribution, total porosity, bulk density, organic matter, macro and micro porosity, EC, pH, CCE, geometric mean and standard deviation of the particle diameter,  water content at -1 kPa, DEM and SAVI were used as PTFs inputs. Artificial neural networks (ANNs) and Bayesian Networks were used to predict PWP, FC, θs. The performance of the developed PTFs was evaluated using the root mean square error (RMSE) and the MGN test between the observed and the predicted values. Good improvement (based on RMSE) in the PTF’s ability to estimate the three coefficients was achieved with certain input combinations of basic soil properties, topography and vegetation information comparing with using only the basic soil properties as inputs. In comparing Bayesian Network and ANNs method, the results indicated that  Bayesian Network  estimated the three  soil moisture retention curve coefficients more accurately and with greater reliability than the ANNs method.

کلیدواژه‌ها [English]

  • Artificial Neural Networks
  • Bayesian networks
  • Pedotransfer functions
  • Remote sensing data
  • Soil adjusted vegetation index (SAVI)
پرویز ل، خلقی م، ولیزاده خ، عراقی نژاد ش و ایران نژاد پ، 1389. ارزیابی کارایی شاخص تفاضل نرمال شده پوشش گیاهی از طریق پایش وضعیت پوشش گیاهی. همایش ملی ژئوماتیک، 1تا2 اردیبهشت ماه، سازمان نقشه برداری کشور، تهران، صفحه­های 432 تا 441.
خالق پناه ن، شرفا م و تیموری س، 1391. تخمین منحنی رطوبتی تعدادی از خاکهای شور و شور و سدیمی با استفاده از توابع انتقالی. مجله پژوهش های خاک، جلد26، شماره4، صفحه­های392 تا 402.
خداوردیلو ح و همایی م ،1383 .اشتقاق توابع انتقالی خاک به منظور برآورد منحنی مشخصه رطوبتی. مجله تحقیقات مهندسی کشاورزی،شماره10، دوره5، صفحه­های 46 تا35 .
ﻋﻠــﻮی ﭘﻨــﺎه س ک ، 1382. ﻛــﺎرﺑﺮد ﺳــﻨﺠﺶ از دور در ﻋﻠــﻮم زﻣﻴﻦ (ﻋﻠﻮم ﺧﺎک). ﻣﺆﺳﺴﻪ اﻧﺘﺸﺎرات و ﭼﺎپ داﻧﺸﮕﺎه ﺗﻬﺮان، صفحه های 45 تا 46.
Bayat H, Neyshabouri MR, Mohammadi K and Nariman-Zadeh N, 2011. Estimating water retention with pedotransfer functions using multi-objective group method of data handling and ANNs. Pedosphere 21: 107-114.
Blak GR and Hartge KH, 2002. Bulk density. Pp. 809-812. In: Dan JH and Topp GC (eds). Methods of Soil Analysis. Part 4. Physical Methods. ASA and SSSA, Madison WI.
Borgesen CD and Schaap MG, 2005.Point and parameter pedotransfer functions for water retention Predictions for Danish soils. Geoderma 127: 154-167.
Dane JH and Hopmans J W, 2002. Pressure plate extractor. Pp. 688-690. In: Dan J H and Topp GC (eds) Methods of Soil Analysis. Part 4. Physical Method. ASA and SSSA, Madison WI.
Diebold FX and Mariano RS, 1995. Comparing Predictive Accuracy. Journal of Business and Economic Statistics 13: 253 –263.
Famiglietti JS, Rudnicki JW and Rodell M, 1998.Variability in surface moisture content along a hill slope transect: Rattlesnake Hill Texas. Journal of Hydrology 210:259–281.
Franklin J, Mccullough P and Gray C, 2000. Terrain variables used for predictive mapping of vegetation communities in Southern California. Pp 331-354. In: Wilson JP and Gallant JC (Eds). Terrain Analysis: Principles and Applications. John Wiley and Sons. New York.
Gee GW and Bauder JW, 1986. Particle - size analysis. Pp. 383–411. In: Klute A (ed). Methods of Soil. Analysis Part 1. 2nd ed. Physical and Mineralogical Methods. ASA and SSSA, Madison, WI.
Jana RB and Mohanty BP, 2011. Enhancing PTFs with remotely sensed data for multi-scale soil water retention estimation. Journal of Hydrology 399: 201–211.
Jana RB, Mohanty BP and Springer EP, 2008.Multiscale Bayesian neural networks for soil water content estimation.Water Resources Research 44(8): Artn W08408.Doi 10.1029/2008wr006879.
Kingston GB, Lambert MF and Maier HR, 2005. Bayesian training of artificial neural networks used for water resources modeling. Water Resources Research 41: W12409.12410.11029/12005 WR004152.
Leij FJ, Romano N, Palladino M and Schaap MG, 2004.Topographical attributes to predict soil hydraulic properties along a hillslope transect. Water Resources Research 40: 1–15.
MacKay DJC, 1995.Probable networks and plausible predictions: a review of practical Bayesian methods for supervised neural networks. Network Computation in Neural Systems 6(3): 469–505.
Minasny B, McBratney AB and Bristow KL, 1999. Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma 93: 225-253.
Mohajerani H and Kholghi M, 2013. Aquifer based on Bayesian network is a management decision. Jornal of Water and Soil 26(6): 1522-1534.
Moore ID, Gessler PE, Nielsen GA and Peterson GA, 1993. Soil attribute prediction using terrain analysis. Soil Science Society of America Journal 57: 443–452.
Pachepsky YA, Timlin DJ and Rawls WJ, 2001. Soil water retention as related to topographic variables. Science Society of America Journal 65: 1787– 1795.
Rawls WJ, Brakensiek DL and Saxton KE, 1982. Estimation of soil water properties. Transactions of the American Society of Agricultural Engineers 25: 1316- 1320.
Rawls WJ, Gimenez D and Grossman R, 1998. Use of texture, bulk density and slope of the water retention curve to predict saturated hydraulic conductivity. Transactions of the American Society of Agricultural Engineers 41(4): 983-988.
Reynolds WD and Elrick DE, 2002. Head soil core (tank) method. pp. 809-812.In: Dan J. H. and Topp Falling GC (eds). Methods of Soil Analysis. Part 4. Physical Methods. ASA and SSSA, Madison WI.
Reynolds WD, Elrick DE, Younga EG, Amoozegar A, Booltink H WG and Bouma J, 2002. Saturated and field-saturated water flow parameters. Pp.797-801. In: Dan JH and Topp GC (eds). Methods of Soil Analysis. Part 4. Physical Methods. ASA and SSSA, Madison WI.
Romano N, Hopmans JW and Dane JH, 2002. Suction table. Pp.692-698. In: Dan JH and Topp GC (eds). Methods of Soil Analysis. Part 4. Physical Methods. ASA and SSSA, Madison WI.
Schaap MG and Bouten W, 1996. Modelling water retention curves of sandy soils using neural networks. Water Resources Research 32: 3033-3040.
Schaap MG and Leij FJ, 1998. Using neural network to predict soil water retention and soil hydraulic conductivity. Soil and Tillage Research 47: 37-42.
Scheinost AC, Sinowsi W and Auerswald K, 1997. Regionalization of soil water retention curves in highly variable soilscape, I. Developing a new pedotransfer function. Geoderma 78: 129-143.
Sharma SK, Mohanty BP, Zhu J, 2006. Including topography and vegetation attributes for developing pedotransfer functions in southern great plains of USA. Soil Science Society of America Journal 70: 1430–1440.
Shirazi MA and Boresma L, 1984. A unifying quantitative of soil texture. Science Society of America Journal 48: 142- 147.
Vereecken H, Maes J, Feyen J and Darius P, 1989. Estimating the soil moisture retention characteristics from texture, bulk density and carbon content. Soil Science Society of America Journal 148(6): 389-403.
Walkley A and Black IA, 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37: 29-39.
WÖsten JHM, Pachepsky YA and Rawls WA, 2001. Pedotransfer functions: bridging the gap between basic soil data and missing soil hydraulic characteristics. Journal of Hydrology 251: 123-150.