استفاده از مدل‌های آماری و هیدروشیمیایی در تحلیل کیفی منابع آب زیرزمینی (مطالعه موردی: دشت مهربان آذربایجان‌شرقی)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه زمین‌شناسی، دانشکده علوم طبیعی، دانشگاه تبریز

2 استاد، گروه زمین‌شناسی، دانشکده علوم طبیعی، دانشگاه تبریز

چکیده

دشت مهربان در استان آذربایجان­شرقی ایران، 60 کیلومتری شرق تبریز، واقع شده ­است و منابع آب زیرزمینی تمامی آب شرب و قسمت عمده­ای از آب مصرفی کشاورزی آن  را  تامین می­کند. این منابع تحت تأثیر سازندهای زمین­شناسی، تبخیر زیاد از آب زیرزمینی و تغذیه از رودخانه­های شور و برداشت بیش از حد از آب زیرزمینی با افزایش شدید مقدار شوری مواجه است. طوری که میزان هدایت الکتریکی در قسمت­های غربی دشت مخصوصا در روستای اربطان به 9800 میکروزیمنس بر سانتی­متر نیز می­رسد. بنابراین در مطالعه حاضر سعی شده است تا با استفاده از روش­های آماری و مدل­های هیدروشیمیایی منشأ شوری آب­های زیرزمینی و تأثیر سازندهای زمین­شناسی بر کیفیت منابع آب منطقه، تعیین گردد. بدین­منظور 22 نمونه آب از چاه­های عمیق و نیمه­عمیق منطقه مورد مطالعه در مهرماه سال 1392 جمع­آوری و در آزمایشگاه آب­شناسی دانشگاه تبریز تجزیه گردید. وضعیت هیدروژئوشیمیایی این منابع با استفاده از روش تحلیل مؤلفه­های اصلی مورد بررسی قرارگرفت. براساس روش تحلیل عاملی، 85/84 درصد از تغییرات کیفی آب توسط سه گروه عاملی کنترل می­شود. به منظور شناسایی فرآیندهای ژئوشیمیایی حاکم بر آبخوان، نمودارهای ترکیبی، نسبت­های یونی و اندیس‌های اشباع کلسیت، دولومیت و ژیپس نمونه­ها مورد ارزیابی قرار گرفت. نتایج نشان داد که ترکیب شیمیایی آب زیرزمینی به شدت تحت تأثیر تغذیه از رودخانه، رسوبات تشکیل­دهنده آبخوان و تبخیر از آب زیرزمینی قرار گرفته­ است. نتایج نمودارهای ترکیبی نشان داد که فرآیند­هایی نظیر انحلال هالیت، ژیپس، دولومیت و تبادل یونی کیفیت شیمیایی آب زیرزمینی را تحت تأثیر قرار می­دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using Statistical and Hydrochemical Models for Qualitative Analysis of Groundwater Resources (Case Study: Mehraban plain, In East Azerbaijan)

نویسندگان [English]

  • Z Javanmard 1
  • A Asghari Moghaddam 2
1
2
چکیده [English]

Mehraban Plain is located in the East Azarbaijan province of Iran, 60 kilometers from east of Tabriz, where groundwater resources supply its entire drinking and most of agricultural water demands. These resources are highly saline due to the effect of salty geological formations, high evaporation from groundwater resources and recharge of saline water from rivers and high withdrawal from fresh groundwater. As a result, the electrical conductivity of groundwater in the western parts of the plain, especially in the Arbatan village, is reached to about 9800 μmhos cm-1. So, it is tried to use statistical and hydrochemical methods to determine sources of groundwater salinity and the effect of geological formation on the water quality of the study area. In this research 22 water samples were collected from deep and shallow abstraction wells and were chemically analyzed in hydrology lab of the Tabriz University. Hydrochemical conditions of the resources were analyzed by multivariate statistical methods. According to the factor analyzing methods, 84.85 percent of chemical variations are controlled by three groups of factors. For identifying, governing geochemical processes in the aquifer composite diagrams, ions ratios and saturation index of calcite, dolomite and gypsum were evaluated. The results showed that the chemical compositions of groundwater were highly effected by recharge from the rivers, sediments of the aquifer and evaporation from the groundwater. The composite diagrams results showed that the processes such as halite, gypsum and dolomite solution and ion exchange phenomenon affect the groundwater chemical quality.

کلیدواژه‌ها [English]

  • Groundwater
  • Hydrochemistry
  • Ionic ratio
  • Saturation index
اصغری مقدم ا، ندیری ع و فیجانی ا، ۱۳۸۷ .بررسی عوامل مؤثر بر هیدروژئوشیمی دشت های بازرگان و پلدشت با استفاده از روش­های آماری چند متغیره. صفحه­های 1 تا 9، دوازدهمین همایش انجمن زمین شناسی ایران، شرکت ملی مناطق نفت خیزجنوب، اهواز.
جوانمرد ز، 1393. بررسی ویژگی­های هیدروژئولوژی و هیدروژئوشیمیایی آبخوان دشت مهربان. پایان­نامه کارشناسی ارشد، دانشکده علوم طبیعی دانشگاه تبریز.
دولتی ج، لشکری­پور غ و حافظی مقدس ن، 1393. بررسی عوامل مؤثر بر هیدروژئوشیمی آبخوان زاهدان با استفاده از روش­های تحلیل عاملی، نمایه­های اشباع و نمودارهای ترکیبی. مجله آب و خاک (علوم و صنایع کشاورزی)، جلد 28، شماره 4، صفحه­های 694 تا 679.
 رضایی م، 1390. مطالعه عوامل کنترل­کننده شوری در آبخوان آبرفتی دشت مند، استان بوشهر. نشریه محیط شناسی، سال 37، شماره 58، صفحه­های 105 تا 116.
علیزاده ز، 1387. بررسی هیدروژئولوژی و هیدروژئوشیمی آبخوان‌های دشت‌های بیلوردی دوزدوزان، پایان‌نامه کارشناسی دانشکده علوم طبیعی دانشگاه تبریز.
کلانتری ن، رحیمی م.ح و چرچی ع،1386. استفاده از نمودارهای ترکیبی، تحلیل عاملی و نمایه­های اشباع در ارزیابی کیفی آب زیرزمینی زویرچری و خران. مجله زمین شناسی مهندسی دانشگاه تربیت معلم تهران، جلد 2، شماره 1، صفحه­های 339 تا 356.
ندیری ع و اصغری مقدم ا،1389. استفاده از روش­های آماری چند متغیره در مطالعه فرآیندهای هیدروشیمیایی آبخوان­ها، مطالعه موردی: دشت تسوج. چهاردهمین همایش انجمن زمین­شناسی، 25 تا 27 شهریور، دانشگاه ارومیه.
Bouwer H, 1978. Groundwater Hydrology. MC Graw-Hill Pub USA.
Bu H, Tan X, Li S and Zhang Q, 2010. Water quality assessment of the Jinshui River (China) using multivariate statistical techniques. Environmental Earth Sciences 60: 1631–1639.
 Edet TN, Nganje AJ, ukpong A and Ekwere AS, 2012. Groundwater chemistry and quality of Nigeria: A status rewiew. African Journal of Environmental Science and Technology 5(13): 1152-1169.
Deutsch WJ, 1997. Groundwater Geochemistry: Fundamental and Application to Contamination. CRC Lewis Publisher, New York 221p.
Derever JI, 1988. Geochemistry of Natural Waters. 3nd edition, Englewood Cliffs, NJ: Prentice Hall Company.
Gogel T, 1981. Discharge of salt water from Permian rocks to major stream-aquifer system in Central Kansas. Water Resources Investigation 81: 43-45.
Guler C, Thyne GD, McCray JE and Tumer AK, 2002. Evaluation of graphical and multivariate ststistical methods for classification of water chemistry data. Hydrogeology Journal 10: 455-474.
Gonzalez Vazquez JC, Grande JA, Barragan FJ, Ocana JA and De La Torre ML, 2005. Nitrate accumulation and other components of the groundwater in relation to cropping system in and aquifer in southwestern Spain. Water Resources Management 19: 1-22.
Howard FW Ken and Mullings E, 1996. Hydrochemical analysis of groundwater flow and saline intrusion in the Clarendon basin. Jamaica. GroundWater 34: 801-810.
Hounslow AW, 1995. Water Quality Data, Analysis and Interpretation, CRC Lewis Publisher, New York 397p.
Lawrence FW and Upchurch SB, 1982. Identification of water recharge areas using geochemical factor analysis, Groundwater 20(6): 680-687.
Lazhar B and Lotfi M, 2012. Hydrochemical analysis and evaluation of groundwater quality in EI Eulma area, Algeria, Applied Water Science 2: 127-133.
Wang L, Wang Y, Xu C, An Z and Wang S, 2010. Analysis and evaluation of the source of heavy metals in water of the River Changjiang. Environmental Monitoring and Assessment. DOI 10.1007/s 10661-010-1388-5.
Parkhurst DL and Appelo CAJ, 1999. User's guide to PHREEQC (version 2)—A computer program for speciation, batch- reaction, one-dimensional transport, and inverse geochemical calculations. USGS Water-Resources Investigations Report 99–4259.
Rajmohan N and Elango L, 2004. Identification and evolution of hydrogeochemical process in the groundwater environment in an area of the PLe and Cheryyar River Basin, Southern India .Environmental Geology 46: 47-61.
Suk H and Lee K, 1999. Characterization of Groundwater Hydrochemical System Through Multivariate Analysis: Clustering into Groundwater Zones. GroundWater 37(3): 358-366.
Stossel RK, 1997. Delineating the chemical compositions of the salinity source for saline groundwater: An example from east-central Canadian Parish, Luisiana. GroundWater 35: 409-417.
Zhang B, Song X, Zhang Y, Han D, Tang CH, Yu Y and Ma Y, 2012. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Research 46: 2737-2748.