مدل سازی دبی ماهانه ورودی به مخزن سد جامیشان با مدلهای خودهمبسته با میانگین متحرک تجمعی و سامانه استنتاج فازی -عصبی انطباقی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی عمران -آب دانشگاه رازی کرمانشاه

2 استاد گروه عمران دانشگاه رازی کرمانشاه

3 استادیار گروه منابع آب، دانشگاه رازی کرمانشاه

4 دانشجوی دکتری مهندسی عمران-آب و سازه های هیدرولیکی، دانشگاه رازی کرمانشاه

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling the Monthly Inflow to Jamishan Dam Reservoir Using Autoregressive Integrated Moving Average and Adaptive Neuro- Fuzzy Inference System Models

نویسندگان [English]

  • H Moeeni 1
  • H Bonakdari 2
  • ُSE Fatemi 3
  • I Ebtehaj 4
چکیده [English]

Hydrological time series modeling is one of the most important issues in water resource
management. In this paper monthly inflow to Jamishan dam reservoir in Kermanshah province
(west of Iran) is modeled by AutoRegressive Integrated Moving Average (ARIMA) and Adaptive
Neuro-Fuzzy Inference System (ANFIS) models. These models are based on stochastic and
Artificial Intelligence (AI) methods, respectively. For modeling up to five parameters in the
ARIMA model were used and produced 1296 models which were fitted on the time series. In
ANFIS model 14 input combinations were defined using the discharges with different lags. Two
states of Grid Partitioning (GP) and Subtractive Clustering (SC) were used in Fuzzy Interface
System (FIS) generation. Also, in training network Back Propagation (BP) and hybrid algorithms
were used. Monthly modeled discharges were compared in the ARIMA and ANFIS models by
some indexes such as Mean Absolute Relative Error (MARE) index which was obtained 0.398 and
0.8 for each model, respectively. The result showed that the ARIMA model was much more
accurate than ANFIS model in modeling low discharges and also in short and long times modeling.

کلیدواژه‌ها [English]

  • ANFIS
  • ARIMA
  • Inflow
  • Modeling
  • Stochastic
منابع مورداستفاده
احمدی ف، آیشم س، خلیلی ک و بهمنش ج، 1394. کاربرد سیستم­های استنتاج فازی-عصبی تطبیقی و ماشین بردار پشتیبان برای برآورد تبخیر و تعرق مرجع ماهانه شمال غرب کشور. نشریه پژوهش آب در کشاورزی، جلد 29، شماره 2، صفحه­های 235 تا 247.
احمدی ف، دین پژوه ی، فاخری فرد ا و خلیلی ک، 1393. مقایسه مدل­های خطی و غیرخطی سری زمانی در پیش­بینی جریان رودخانه­ (مطالعه موردی: رودخانه باراندوزچای ارومیه). مجله علوم و مهندسی آبیاری، دوره­ 37، شماره­ 1، صفحه­های 93 تا 105.
احمدی ف، دین پژوه ی، فاخری فرد ا، خلیلی ک و دربندی ص، 1394. مقایسه مدل­های غیرخطی سری زمانی و برنامه­ریزی ژنتیک در پیش­بینی جریان روزانه رودخانه­ها (مطالعه موردی: رودخانه باراندوزچای). مجله پژوهش­های حفاظت آب و خاک، جلد 22، شماره 1، صفحه­های 151 تا 169.
خلقی م، اشرف­زاده ا و مالمیر م، 1385. پیش­بینی کم­آبی ماهانه با استفاده از یک مدل استوکستیک و سیستم استنتاج فازی مبتنی بر شبکه­­ تطبیقی. مجله­­ تحقیقات منابع آب ایران، سال 5، شماره 2، صفحه­های 16 تا 26.
ناوه ه، خلیلی ک، اعلمی م و بهمنش ج، 1391. پیش­بینی جریان رودخانه با استفاده از مدل غیرخطی سری زمانی دو-خطی (مطالعه موردی رودخانه­های باراندوزچای و شهرچای). نشریه علمی پژوهشی آب و خاک (علوم و صنایع کشاورزی)، جلد 26، شماره 5، صفحه­های 1299 تا 1307.
Akaike H, 1987. Factor analysis and AIC. Psychometrika 52(3): 317-32.
Box GE and Cox DR, 1964. An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological): 211-52.
Box GE and Pierce DA, 1970. Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American Statistical Association 65: 1509-26.
Cryer JD and Chan K-S, 2008. Time Series Analysis With Applications in R, Second ed. Springer, New York (ISBN: 0387759581, p. 491).
Ebtehaj I and Bonakdari H, 2014. Performance Evaluation of Adaptive Neural Fuzzy Inference System for Sediment Transport in Sewers. Water Resources Management 28: 4765-79.
Firat M, 2008. Comparison of artificial intelligence techniques for river flow forecasting. Hydrology and Earth System Sciences 12: 123-39.
Hipel KW and McLeod AI, 1994. Time Series Modelling of Water Resources and Environmental Systems. Elsevier, Amsterdam.
Hurst HE, Black RP and Simaika Y, 1965. Long-Term Storage: an Experimental Study. Constable, London.
Jarque CM and Bera AK, 1980. Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters 6: 255-59.
Khatibi R, Ghorbani MA, Naghipour L, Jothiprakash V, Fathima TA and Fazelifard MH, 2014. Inter-comparison of time series models of lake levels predicted by several modeling strategies. Journal of Hydrology 511: 530-545.
Kisi O and Cigizoglu HK, 2007. Comparison of different ANN techniques in river flow prediction. Civil Engineering and Environmental Systems 24(3): 211-231.
Kisi O, Dailr AH, Cimen M and Shiri J, 2012. Suspended sediment modeling using genetic programming and soft computing techniques. Journal of Hydrology 450: 48-58.
McLeod A, 1978. On the distribution of residual autocorrelations in Box-Jenkins models. Journal of the Royal Statistical Society. Series B (Methodological): 296-302.
Nawaz N, Harun S and Talei A, 2015. Application of adaptive network-based fuzzy inference system (ANFIS) for river stage prediction in a tropical catchment. 735: 195-199. Applied mechanics and materials. Trans Tech Publ, Switzerland.
Salas JD, Delleur JW, Yevjevich V and Lane WL, 1980. Applied Modeling of Hydrologic Time Series. Water Resources Publication, Colorado.
Valipour M, 2012. Ability of Box-Jenkins models to estimate of reference potential evapotranspiration a case study, Mehrabad synoptic station, Tehran, Iran. Journal of Agriculture and Veterinary Science 1(5): 1-11.
Valipour M, 2015. Long‐term runoff study using SARIMA and ARIMA models in the United States. Meteorological Applications 22(3): 592–598.