تخمین ضریب پخش طولی آلاینده ها در مجاری روباز با استفاده از شبکه عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی عمران، دانشگاه شهید اشرفی اصفهانی (ره)

2 دانشجوی دکترای گروه علوم و مهندسی آب، دانشگاه فردوسی مشهد

3 استاد گروه مهندسی آب، دانشگاه صنعتی اصفهان

چکیده

انتقال طولی آلاینده ها یکی از مراحل مهم در فرآیند رقیق سازی آلاینده ها میباشد که شناخت آن از اهمیت ویژهای
برخوردار است. دشواری اندازه گیری ضریب انتشار طولی در رودخانهها نیاز به استفاده از روشهای مناسب مدلسازی
در پیشبینی این ضریب را بیشتر میکند. یکی از روشهای کارآمد مدل سازی شبکه عصبی مصنوعی است که یکی از
تکنیکهای هوش مصنوعی محسوب میشود. در این مدل بدون استفاده از معادلات پیچیده غیرخطی، میتوان دینامیک
حاکم بر سیستم را استخراج نموده و از این طریق، خروجی مدل را پیشبینی نمود. در این مطالعه ضریب انتشار طولی با
توجه به مقادیر پارامترهای هیدرولیکی و هندسی رودخانه ها به عنوان پارامترهای ورودی و با استفاده از شبکه عصبی
مصنوعی پیش بینی گردید. نتایج نشان داد شبکه پرسپترون پیشخور، پس انتشار خطا از دقت مناسبی برای تخمین ضریب
پخش طولی آلودگی برخوردار است. نتایج تحلیل ترکیب پارامترهای ورودی نشان داد که با لحاظ نسبت سرعت به سرعت
0 % و در صورت لحاظ / 0 و تابع خطا برابر 87 / برشی بهعنوان پارامتر ورودی مدل، میزان ضریب تعیین همبستگی 84
1/ 0 و تابع خطا برابر 01 / نسبت عرضجریان به عمق جریان بهعنوان پارامتر ورودی، میزان ضریب تعیین همبستگی 7
% حاصل شد. بنابراین نسبت سرعت بهسرعت برشی یا ضریب زبری دارای تأثیر بیشتری بر ضریب انتشار طولی است.
روشارائهشده در این تحقیق رهیافتی کارآمد در تخمین ضریب پخش طولی آلودگی در رودخانه ها محسوب شده و قابلیت
ترکیب با سایر مدلهای پخش آلودگی را دارا میباشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimating Longitudinal Dispersion Coefficient of Pollutants in Open Channel Flows Using Artificial Neural Networks

نویسندگان [English]

  • E Izadinia 1
  • A Saadatpour 2
  • M Heidarpour 3
1
2
3
چکیده [English]

The longitudinal dispersion of pollutants is one of the most effiective phases of the pollutants
dilution process, which having insight about it is of importance. The complexity of measuring
longitudinal dispersion coefficient in rivers increases the necessity of using appropriate methods of
modeling to predict it. One of the most efficient methods for modeling is the artificial neural network
which is one of the artificial intelligence techniques. In this model, without applying the complex
nonlinear equations, the dynamics of the system can be extracted and, by this way the output of the
model can be predicted. In this study, the longitudinal dispersion coefficient was predicted by
artificial neural network (ANN), using hydraulic and geometric parameters of the streams as input
parameters. Results indicated that the feed forward perceptron network had a suitable precision in
estimating the longitudinal dispersion coefficient. Sensitivity analysis indicated that in the model, for
which the ratio of velocity to the shear velocity was considered as an input variable, the determination
coefficient and error function were equal to 0.84 and 0.87%, respectively. However, in the model
with an input variable of width to flow depth ratio, the determination coefficient and error function
were obtained 0.7 and 1.01%, respectively. Therefore, the ratio of the velocity to the shear velocity
or roughness coefficient had a greater impact on longitudinal dispersion coefficient, as compared with
the last one. The proposed methodology is an efficient approach to estimate dispersion coefficient in
streams and can be implemented into mathematical models of pollutant transfer.

کلیدواژه‌ها [English]

  • Artificial neural network
  • Longitudinal Dispersion Coefficient
  • Open channel
  • Pollutant
  • Pollution Transmission
منابع مورداستفاده
افضلی­مهر ح و حیدرپور م، 1380. مبانی هیدرودینامیک کانال­های باز. انتشارات ارکان.
اکبرزاده ع، نوری ر، فرخ نیا ا، خاکپور ا و صباحی م، 1389. تحلیل دقت و عدم قطعیت مدل‌های هوشمند در پیش‌بینی ضریب انتشار طولی رودخانه‌ها. مجله آب و فاضلاب، شماره 3، صفحه­های 99 تا 107.
ایزدی­نیا ا و عابدی ج، 1390. تعیین ضریب پراکندگی طولی آلودگی در رودخانه­ها. مجله تحقیقات منابع آب ایران، سال 7، شماره 1، صفحه­های 59 تا 66.
 پورآباده­ای م، تکلدانی م، و لیاقت ع، 1386. بررسی تأثیر پارامترهای جریان بر ضریب پخش آلودگی در کانال مستطیلی. صفحه های 29 تا 38 مجموعه مقالات ششمین کنفرانس هیدرولیک ایران، شهریورماه، شهرکرد.
ریاحی مدوار ح، و ایوب­زاده ع، 1387. تخمین ضریب پراکندگی طولی آلودگی با استفاده از سیستم استنتاج فازی-عصبی انطباقی. مجله آب و فاضلاب، شماره67، صفحه­های 34 تا 46.
شریفی م و صالحی م، 1384. کاربرد شبکه‌های عصبی در پِیش‌بینی جریان رودخانه در حوزه معرف کارده. پروژه تحقیقاتی شرکت سهامی مدیریت منابع آب ایران.
Ahsan N, 2013. An ANN based approach to estimate longitudinal dispersion coefficient using dimensionally consistent input parameters. Res and Dev (IJCSEIERD) 3(2): 205-212.
Fischer HB, 1968. Dispersion predictions in natural streams. J Sanit Eng ASCE 94: 927–43.
Fischer HB, List EJ, Koh RCY, Imberger J, and Brooks NH, 1979. Mixing in Inland and Coastal Waters. Academic Press, New York: 104–138.
Iwasa Y and Aya S, 1991. Predicting longitudinal dispersion coefficient in open channel flows. Pp. 505–510. In: Proceedings of the internation symposium on environmental hydraulics, Hong Kong.
Kashefipour MS and Falconer RA, 2002. Longitudinal dispersion coefficients in natural channels. Water Resour Res 36(6):1596–1608.
Liu H, 1977. Predicting dispersion coefficient of streams. J Environ Eng Div 103(1): 59–69.
McClelland J, and Rumelhart D, 1986. Biol Mech 327-331.
McQuivey RS and Keefer TN, 1974. Simple method for predicting dispersion in streams. J Environ Eng ASCE 100: 997–1011.
Noori R, Karbassi AR, Mehdizadeh H, Vesali‐Naseh M and Sabahi MS, 2011. A framework development for predicting the longitudinal dispersion coefficient in natural streams using an artificial neural network. Environ Prog and Sus Ener 30(3): 439-449.
Rosenblatt F, 1962. Principles of Neurodynamics. Spartan Books, New York.
Sahay RR and Dutta S, 2009. Prediction of longitudinal dispersion coefficients in natural rivers using genetic algorithm. Hydraul Res 40(6): 544–552.
Sahay RR, 2011. Prediction of longitudinal dispersion coefficients in natural rivers using artificial neural network. Environ Fluid Mech 11: 247–261
Seo IW and Cheong TS, 1998. Predicting longitudinal dispersion coefficient in natural streams. J Hydraul Eng. ASCE 124(1): 25–32.
Tayfur G and Singh VP, 2005. Predicting longitudinal dispersion coefficient in natural streams by artificial neural network. J Hydraul Eng ASCE, 131(11): 991-1000.
Taylor G, 1954. The dispersion of matter in turbulent flow through a pipe. Proc R Soc London A223: 446–68.
Toprak ZF and Cigizoglu HK, 2008. Predicting longitudinal dispersion coefficient in natural streams by artificial intelligence methods. Hydrol Process 22(20): 4106–4129.
Toprak ZF, Hamidi N, Kisi O and Gerger R, 2014. Modeling dimensionless longitudinal dispersion coefficient in natural streams using artificial intelligence methods. KSCE J Civil Eng. 18(2): 718-730.