روابط بین پتانسیل آب برگ، تنش -درجه- روز و تخلیه آب قابل استفاده در درخت بادام تحت تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم خاک دانشگاه تبریز و عضو هیئت علمی مرکز تحقیقات کشاورزی استان آذربایجان شرقی

2 استاد گروه علوم خاک دانشگاه تبریز

3 دانشیار گروه خاکشناسی دانشگاه صنعتی اصفهان

4 استادیار گروه علوم خاک دانشگاه تبریز

چکیده

در این پژوهش شیب منحنی­رطوبتی در نقطه ­عطف آن­(Si) ­به­عنوان شاخص کیفیت فیزیکی خاک در نظر گرفته شده و همبستگی آن با ویژگی­های زود­یافت خاک و اطلاعات به دست آمده از تصاویر ماهواره­ای(SAVI) واطلاعات رقومی ارتفاع(DEM) بررسی شده ­است. بدین منظور­176­نمونه دست­خورده و به همان تعداد نمونه دست­نخورده که از لحاظ ارتفاع، نوع پوشش گیاهی­، کاربری اراضی والگوی توزیع خاک دارای تنوع لازم بودند، از خاک­های استان­های آذربایجان شرقی و گیلان تهیه گردید. توزیع اندازه ذرات، جرم مخصوص ظاهری، میانگین هندسی قطر خاکدانه­ها، تخلخل کل، ماده آلی، درصد آهک،EC ،pH ، میانگین هندسی و انحراف استاندارد هندسی قطر خاکدانه­ها، رطوبت ظرفیت مزرعه­ای و ,SAVI DEM به­عنوان ورودی توابع انتقالی مورد استفاده قرار­گرفتند. با توجه به اینکه قابلیت اطمینان پیش­بینی­های هیدرولیکی در مدیریت و طراحی و برنامه­ریزی فعالیت­های علوم خاک حائز اهمیت است. لذا در این تحقیق سعی شد عدم­قطعیت در Si تخمینی، کمی شود. بدین منظور از روش شبکه عصبی مصنوعی ادغام شده با روش بوت استرپ­(BANNs)­ استفاده شد. مدل­های ایجاد شده با استفاده از آزمون مرگان-گرنجر-نیوبلد (MGN) ­و ریشه میانگین مربعات خطا­(RMSE) ­برای داده­های آموزش و صحت­سنجی ارزیابی شدند. با وجود تغییر­پذیری موجود در روش بوت­استرپ، نتایج مؤثر بودنSAVI حاصل از تصاویر ماهواره­ای و DEM را در توسعه و بهبود توابع انتقال­ هنگامی که به خصوصیات پایه خاک افزوده می­شوند در مقایسه با زمانی که تنها از خصوصیات پایه خاک به­عنوان ورودی استفاده می­شود، تأیید می­کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Relationships between LeafWater Potential, Stress-Degree-Day and Available Water Depletion in Almond Tree under Salinity Stress

نویسندگان [English]

  • A Onnabi Milan 1
  • MR Neyshabouri 2
  • MR Mosaddeghi 3
  • D Zare Haggi 4

کلیدواژه‌ها [English]

  • Irrigation scheduling
  • Soil water content
  • Vapor pressure deficit
  • Water relations
  • Water stress indicator
منابع مورداستفاده
علی اصغرزاد ن، 1379. بررسی پراکنش و تراکم جمعیت قارچ‌های میکوریز آربوسکولار در خاک‌های شور دشت تبریز و تعیین اثرات تلقیح آنها در بهبود تحمل پیاز و جو به تنش شوری، رساله دکتری، دانشکده کشاورزی، دانشگاه تهران، ایران.
عنابی میلانی ا، و زمانی ص، 1393. تأثیر روش‌های برنامه‌ریزی آبیاری بر عملکرد و کارآیی مصرف آب گندم. نشرﯾﻪ ﭘﮋوﻫﺶ آب در ﮐﺸﺎورزی، ﺟﻠﺪ 28، ﺷﻤﺎره 3، صفحه‌های 489 تا 502.
Bartels D and Sunkar R, 2005. Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24: 23–58.
Bellvert J, Zarco-Tejada PJ, Girona J, and Fereres E, 2014. Mapping crop water stress index in a ‘Pinot-noir’ vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precision Agric.  15: 361–376.
Carrow RN and Duncan RR, 1998. Salt-Affected Turfgrass Sites: Assessment and Management. Sleeping Bear Press, Farmington Hills, MI.
Castel JR and Fereres E, 1982. Responses of young almond trees to two drought periods in the field. J. Hortic. Sci. 57: 175–187.
Charrera M, Parasi GA and Monet R, 1998. Rootstock influence on the performance of the peach variety "Catherine". Acta Hort. 465: 573-577.
Cohen Y, Alchanatis V, Meron M, Saranga Y and Tsipris J, 2005. Estimation of leaf water potential by thermal imagery and spatial analysis. J. Exp. Bot. 56(417): 1843-1852.
Ehrler WL, Idso SB, Jackson RD and Reginato RJ, 1978. Wheat canopy temperature: Relation to plant water potential. Agron. J. 70: 251–256.
El Gharbi A and Jraidi B, 1994. Performance of rootstocks of almond, peach and peach × almond hybrids with regard to iron chlorosis. Acta Hort. 373: 91-97.
Flowers TJ, 1999. Salinization and horticultural production. Sci. Hort. 78: 1-4.
Flowers TJ and Yeo AR, 1986. Ion relations of plants under drought and salinity. Aust. J. Plant Physiol. 13: 75--91.
García-Tejero I, Durán-Zuazo VH, Arriaga J, Hernández A, Vélez LM and Muriel-Fernández JL, 2012. Approach to assess infrared thermal imaging of almond trees under water-stress conditions. Fruits 67: 463–474.
García-Tejero I, Durán-Zuazo VH, Muriel FJL and Jiménez BJA, 2011. Linking canopy temperature and trunk diameter fluctuations with other physiological water status tools for water stress management in citrus crops, Funct. Plant Biol. 38: 106–117.
Gardner BR, Blad BL and Watts DG, 1981a. Plant and air temperatures in differentially irrigated corn. Agr. Meteorol. 25: 207-217.
Gardner BR, Blad BL, Garrity DP and Watts DG, 1981b. Relationships between crop temperature, grain yield, evapotranspiration and phenological development in two hybrids of moisture stressed sorghum. Irrig. Sci. 2: 213-224.
Girona J, Mata M and Marsal J, 2005. Regulated deficit irrigation during the kernel filling Period and optimal irrigation rates in almond. Agr. Water Manage. 75: 152–167.
Goldhamer DA and Fereres E, 2001. Simplified tree water status measurements can aid almond irrigation. Calif. Agric. 55(3): 32-37.
Goldhamer DA and Fereres E, 2004. Irrigation scheduling of almond trees with trunk diameter sensors. Irrig. Sci. 23: 11–19.
Goldhamer DA, Viveros M and Salinas M, 2006. Regulated deficit irrigation in almonds: effects of variations in applied water and stress timing on yield and yield components, Irrig. Sci. 24: 101–114.
Gonzalez-Dugo V, Zarco-Tejada P, Berni JAJ, Suarez L, Goldhamer D and Fereres E, 2012. Almond tree canopy temperature reveals intra-crown variability that is water stress-dependent. Agr. Forest Meteorol. 154-155: 156-165.
Gonzalez-Dugo V, Zarco-Tejada P, Nicolás E, Nortes PA, Alarcon JJ, Intrigliolo DS and Fereres E, 2013. Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard, Precis. Agric.
Greenway H and Munns R, 1980. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 31: 149-190.
Gucci R, Lombardini L and Tattini M, 1997. Analysis of leaf water relations in leaves of two olive (Olea europea L.) cultivars differing in tolerance to salinity. Tree Physiol. 17: 13-21.
Heermann DF and Duke HR, 1978. Evaluation of crop water stress under limited irrigation. Pap.—Am. Soc. Agric. Eng. 78-2556, 1-12.
Howell TA, Hatfield jL, Rhoades jD and Meron M, 1984. Response of cotton water stress indicators to soil salinity. Irrig. Sci. 5: 25-36.
Idso SB and Reginato RJ, 1982. Soil- and atmosphere-induced plant water stress in cotton as inferred from foliage temperatures. Water Resour. Res. 18(4): 1143-1148.
Idso SB, Reginato RJ, Jackson RD and Pinter, Jr. PJ, 1981. Measuring yield-reducing plant water potential depressions in wheat by infrared thermometry. Irrig Sci 2: 205-212.
Jackson RD, 1982. Canopy Temperature and Crop Water Stress Index. Pp. 43–85. In: Hillel D (ed). Advances in Irrigation, vol. 1. Academic Press, New York.
Jackson RD, Reginato RJ and Idso SB, 1977. Wheat canopy temperature: A practical tool for evaluating water requirements. Water Resour. Res. 13(3): 651–656.
Jones HG, 2004. Irrigation scheduling: advantages and pitfalls of plant-based methods. J. Exp. Bot. 55(407): 2427-2436.
Kluitenberg GJ and Biggar JW, 1992. Canopy temperature as a measure of salinity stress on sorghum. Irrig. Sci. 13(3): 115-121.
Kumar A and Tripathi RP, 1991. Relationships between leaf water potential, canopy temperature and transpiration in irrigated and nonirrigated wheat. J. Agron. Crop Sci. 166: 19-23.
Lemeur R, Ranjbar A and Van Damme P, 2001. Ecophysiological characteristics of two pistachio species (Pistacia khinjuk and Pistacia mutica) in response to salinity. Pp. 179-187. In: Ak BE (ed.). XI GREMPA Seminar on Pistachios and Almonds. Zaragoza:  CIHEAM, (Cahiers Options Méditerranéennes; n. 56).
Levitt J, 1980. Salt and ion stresses. Pp. 365–488. In: Levitt J (ed). Responses of Plant to Environmental Stresses. Vol 2. New York, Academic Press.
Marsal J, Girona J and Mata M, 1997. Leaf water relation parameters in almond compared to hazelnut trees during a deficit irrigation period. J. Am. Soc. Hortic. Sci. 122: 582–587.
McCutchan H and Shackel KA, 1992. Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv. French). J. Am. Soc. Hortic. Sci. 117(4): 607-611.
Monastra F and Raparelli E, 1997. Inventory of Almond Research, Germplasm and References, REUR Technical Series 51, FAO, Rome.
Monteith JL, 1973. Principles of Environmental Physics. Edward Arnold, London
Monticelli S, Puppi G and Damiano C, 2000. Effects of in vivo mycorrhization on micropropagated fruit tree rootstocks. Appl. Soil Ecol. 15: 105-111.
Morales MA, Alarcón JJ, Torrecillas A and Sánchez-Blanco MJ, 2000. Growth and water relations of Lotus creticus creticus plants as affected by salinity. Biol. Plantarum 43(3): 413-417.
Mousavi A, Lessani H, Babalar M, Talaei AR and Fallahi E, 2008. Influence of salinity on chlorophyll, leaf water potential, total soluble sugars, and mineral nutrients in two young olive cultivars. J. Plant Nutr. 31: 1906–1916.
Murray FW, 1967. On the computation of saturation vapor pressure. J. Appl. Meteorol. 6: 203–204.
Naor A, 2000. Midday stem water potential as a plant water stress indicator for irrigation scheduling in fruit trees. Acta Hort. 537: 447-454.
Naor A. 2006. Irrigation scheduling and evaluation of tree water status in deciduous orchards, Hortic. Rev. 112–165.
Nortes P, 2008. Respuesta agronómica y fisiológica del almendro al riego deficitario. Indicadores de Estrés Hídrico, Univ. Politéc. Cartagena, PhD Thesis, Spain, 194 p.
Pastori GM and Foyer GH, 2002. Common components, networks, and pathway of cross-tolerance to stress. The central role of redox and abscisic acid-mediated control. Plant Physiol. 129: 460–468.
Rahimi Eichi V, 2013. Water use efficiency in almond (Prunus dulcis (Mill.) D. A. Webb). M.Sc. thesis. School of Agriculture, Food and Wine. Faculty of Science. University of Adelaide.
Razouk R, Ibijbijen J, Kajji A and Karrou M, 2013. Response of peach, plum and almond to water restrictions applied during slowdown periods of fruit growth. Am. J. Plant Sci. 4: 561-570
Roy S and Ophori D, 2014. Estimation of crop water stress index in almond orchards using thermal aerial imagery. JOSH. 12(1) p 14.
Scholander PF, Hammel HT, Bradstreet ED and Hemmingsen EA, 1965. Sap pressure in vascular plants. Science 148: 339-346.
Sepaskhah AR and Kashefipour SM, 1994. Relationships between leaf water potential, CWSI, yield and fruit quality of sweet lime under drip irrigation. Agric. Water Manage. 25: 13-22.
Sepulcre-Cantó G, Zarco-Tejada PJ, Jiménez-Muñoz JC, Sobrino JA, de Miguel E and Villalobos FJ, 2006. Detection of water stress in an olive orchard with thermal remote sensing imagery. Agr. Forest Meteorol. 136: 31-44.
Shackel K, 2011. A plant-based approach to deficit irrigation in trees and vines. Hort. Sci. 46(2): 173-177.
Shackel KA, Ahmadi H, Biasi W, Buchner R, Goldhamer D, Gurusinghe S, Hasey J, Kester D, Krueger B, Lampinen B, McGourty G, Micke W, Mitcham E, Olson B, Pelletrau K, Philips H, Ramos D, Schwankl L, Sibbett S, Snyder R, Southwick S, Stevenson M, Thorpe M, Weinbaum S and Yeager J, 1997. Plant water status as an index of irrigation need in deciduous fruit trees. HortTechnology 7(1): 23-29.
Shannon MC, Grieve CM and Francois LE, 1994. Whole-plant response to salinity. Pp. 199-244. In: Wilkinson RE (ed). Plant-Environment Interactions. New York: Marcel Dekker, Inc.
Sharifmoghaddam N, Safarnejad A and Tabatabaei SM, 2011. The effect of plant growth regulators on callus induction and regeneration of GF677 rootstock. Int. J. Sci. Nat. 2(4): 805-808.
Testi L, Goldhamer D, Iniesta F and Salinas M, 2008. Crop water stress index is a sensitive water stress indicator in pistachio trees. Irrig. Sci. 26(5): 395-405.
Torrecillas A, Ruiz-Sanchez MC, Leon A and Garcia AL, 1988. Stomatal response to leaf water potential in almond trees under drip irrigated and nonirrigated conditions. Plant and Soil 112(1): 151-153.
Turner NC, 1988. Measurement of plant water status by the pressure chamber technique. Irrig. Sci. 9: 289–308.
Tuteja N, 2007. Mechanisms of high salinity tolerance in plants. Method Enzymol. 428: 419–438.
Udompetaikul V, Upadhyaya SK, Slaughter D, Lampinen B and Shackel K, 2011. Plant Water Stress Detection Using Leaf Temperature and Microclimatic Information, Pp. 1-10, In: ASABE Annual International Meeting, Sponsored by ASABE Galt House Louisville, Kentucky August 7 – 10, Paper Number: 1111555,
Wang D and Gartung J, 2010. Infrared canopy temperature of early-ripening peach trees under postharvest deficit irrigation. Agric. Water Manage. 97: 1787–1794.
Yadollahi A and NazaryMoghadam AR, 2012. Micropropagation of GF677 rootstock. J. Agr. Sci. 4(5): 131-13