تعیین ضریب گیاهی ذرت و لوبیا در شرایط کشت مخلوط جهت افزایش دقت برنامه ریزی آبیاری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم و مهندسی خاک، دانشگاه تبریز

2 استاد گروه علوم و مهندسی خاک، دانشگاه تبریز

3 استادیار گروه مهندسی آب، دانشگاه تبریز

4 دانش آموخته کارشناسی ارشد گروه علوم و مهندسی خاک، دانشگاه تبریز

چکیده

این عامل بیانگر تخلیه بالقوه از سطح خاک مرطوب و پوشش گیاهی بوده و ازاینرو مطالعه آن حائز اهمیت
هست. این پژوهش بهمنظور اندازهگیری و برآورد تبخیر - تعرق بالقوه و ضریب گیاهی کشت مخلوط ذرت علوفهای رقم
با استفاده از لایسیمتر زهکشدار واقع در مزرعه (Vicia faba L.) و لوبیاچیتی رقم تلاش (Zea mays L.) سینگل کراس 704
969 میلیمتر در طول فصل / تحقیقاتی دانشگاه تبریز صورت گرفته است. مقدار تبخیر- تعرق بالقوه کشت مخلوط 37
955 میلی- / رشد بهدست آمد. در این تحقیق مقدار تبخیر - تعرق مرجع با استفاده از معادله فائو-پنمن-مانتیث، برابر 77
متر در منطقه تعیین گردید. طول دورههای رشد کشت مخلوط شامل دورههای اولیه، توسعه، میانی و پایانی رشد به
ترتیب برابر 41 ،37 ،18 و 17 روز و میزان درجه روز رشد نیز برای مراحل مختلف رشد 678 ،567 ،179 و 227 روز
1بهدست آمد. با توجه به / 1 و 09 /17 ،0/ تعیین شد. ضریب گیاهی برای مرحله ابتدایی، میانی و انتهای رشد بهترتیب 67
نبود ضریب گیاهی برای حالت کشت مخلوط استفاده از این ضرایب برای برنامهریزی آبیاری این نوع کشت توصیه می-
گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determining Crop Coefficient of Corn and Bean in Intercropping in Order to Increase the Precision of Irrigation Planning

نویسندگان [English]

  • D Zarehaghi 1
  • MR Neyshabouri 2
  • A Majnooni-Heris 3
  • Z Jalilian 4
چکیده [English]

Determination of plants evapotranspiration is one of the most important factors in promoting
the utilization of water resources in agriculture. This factor is indicative of the potential depletion
rate from wet soil surface and vegetation; hence, it is important to be studied. This research has
been done to measure and estimate potential evapotranspiration, and single crop coefficients based
on intercropping of forage maize single cross 704 (Zea mays L.) cultivar and bean effort (Vicia faba
L.) cultivar, using the drainage Lysimeter, located in the research farm of the University of Tabriz.
The potential evapotranspiration of intercropping was obtained, 967.37 mm during the growing
season. . In this research reference evapotranspiration was determined, 955.77 mm using FAOPenman-
Monteith equation for the studied area. Length of intercropping growth periods in initial,
development and final stages, were determined equal to 18, 37, 41 and 17 days, respectively. Also
the amount of growing degree days at the same stages were 179, 567and 227, respectively. Single
crop coefficient was obtained, for initial, middle and final growth stages equal to 0.67, 1.17 and
1.09 respectively. Due to lack of crop coefficients for the case of intercropping, using the obtained
coefficients are recommended for this type of crop irrigation scheduling.

کلیدواژه‌ها [English]

  • Bean
  • Crop coefficient
  • evapotranspiration
  • Intercropping
  • Maize
منابع مورد استفاده
 اسدی ا، 1381. اندازه­گیری میزان تبخیر و تعرق ذرت علوفه­ای با استفاده از لایسیمتر و مقایسه با مدل­های مختلف برآورد تبخیر و تعرق در منطقه کرکج تبریز. پایان­نامه کارشناسی ارشد آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه تبریز.
قیصری م، میرلطیفی م، همایی م و اسدی م، 1385. تعیین نیاز آبی ذرت علوفه­ای و ضریب گیاهی آن در مراحل مختلف رشد. مجله تحقیقات مهندسی کشاورزی، جلد 7 ، شماره 26، صفحه­های 125تا142.
مالک ا و عالمی م­ح، 1365. آب مصرفی گیاهان و آب مورد نیاز برای آبیاری. مرکز نشر دانشگاهی تهران.
مجنونی هریس ا، ناظمی اح، صدرالدینی ع­ا، زندپارسا ش و نیشابوری م­ر، 1391. ارزیابی مدل شبیه­سازی رشد ذرت (MSM2) با استفاده از داده­های لایسیمتری. نشریه دانش آب و خاک، جلد 2، شماره22، صفحه­های 55 تا66.
ناصری ا و پورعباس ف، 1384. واکنش عملکرد لوبیا به تنش کمبود آب. صفحه­های 586 تا 589. مجموعه مقالات اوّلین همایش ملّی حبوبات. پژوهشکده علوم گیاهی دانشگاه فردوسی مشهد.
Alberto MCR, Quilty JR, Burish RJ, Wassmann R, Haidar S, Correa Jr TQ  and Sandro JM, 2014. Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation. Agricultural Water Management 136: 1–12.
 Allen RG, Bastiaanssen WGM, Wright JL, Morse A, Tasumi M. and Trezza R, 2002. Evapotranspiration from Satellite Images for Water Management and Hydrologic Balances. Pp, 1-12. Proceedings of the 2002 ICID conference, Montreal, Canada.
 Allen RG, Pereira LS, Raes D. and Smith M, 1998. Crop evapotranspiration: guidelines for computing crop water requirements FAO Irrigation and Drainage paper, No.56.FAO, Rome.
Anil L, Park J and Philips RH, 2000. The potential of Forage- maize intercrops in ruminant nutrition. Animal Feed Sciences and Technology 85:157-167.
Awal MA, Koshi H and Ikeda T, 2006. Radiation interception and use by maize/peanut intercrop canopy. Agricultural and Forest Meteorology 139: 74–83.
Dehghani sanij H, Yamamoto T and Rasiah V, 2004. Assessment of evapotranspiration estimation models for use in semi-arid environments. Agricultural Water Management 64: 91-106.
Doorenbos J and Kassam AH, 1979. Yield Response to Water. Irrigation and Drainage Paper, NO. 33. FAO, Rome.
Doorenbos J and Pruitt WO, 1977. Crop Water Requirements. Irrigation and Drainage Paper NO. 24, FAO, 144 p.
Gao Y, Duan A, Li F, Liu Z, Liu H, Liu Z and Sun J, 2009. Crop coefficient and water-use efficiency of winter wheat/spring maize strip intercropping. Field Crops Research 111: 65–73.
Gerson AM, Arruda FB, Sakai E and Fujiwar M, 2001. The influence of crop canopy on evapotranspiration and crop coefficient of beans (Phaseolus Vulgaris L.). Agricultural Water Management 49: 211-224.
Gong L, Xu Yu CH, Chen D, Halldin S and Chen Y D, 2006. Sensitivity of the Penman–Monteith Reference Evapotranspiration to Key Climatic Variables in the Changing (Yangtze River) Basin. Journal of Hydrology 329: 620– 629.
Grismer M ASCE, Orang M and Matyac S, 2002. Pan Evaporation to Evapotranspiration Conversion Methods. Journal of Irrigation and Drainage Engineering 128 (3): 180-184.
 Mandal BK, Das D, Saha A and Mohasin M, 1996. Yield advantage of wheat (Triticum aestivum) and chickpea (Cicer arietinum) under different spatial arrangements in intercropping. Indian Journal of Agronomy 41 (1): 17–21.
Rahimi Khoob A, 2008. Artificial Neural Network Estimation of Reference Evapotranspiration from pan Evaporation in a Semi-arid Environment. Irrigation Science 27: 35–39.
  Rizzalli RH, Villalobos FJ and Orgaz F, 2002. Radiation interception, radiation-use efficiency and dry matter partitioning in garlic (Allium Sativum L.). European Journal of Agronomy 18: 33-43.
 Rodrigo VHL, Stirling CM, Teklehaimanot Z and Nugawela A, 2001. Intercropping with banana to improve fractional interception and radiation-use efficiency of immature rubber plantations. Field Crops Research 69: 237–249.
Rowe EC, Noordwijk MV, Suprayogo D and Cadisch G. 2005. Nitrogen use efficiency of monoculture and hedgerow intercropping in the humid tropics. Plant and Soil 268: 61–74.
Sammis TW, Mapel CL, Lugg DG, Lanstord RR and Mc Gukin JT, 1985. Evapotranspiration crop coefficient predicted using growing degree-days. Transactions of the ASCE 28: 773-780.
Shahrokhnia MH and Sepaskhah AR, 2013. Single and dual crop coefficients and crop evapotranspiration for wheat and maize in a semi-arid region. Theorical Applied Climatology 114: 495–510.
Sun L and Song Changchun, 2008. Evapotranspiration from a Freshwater Marsh in the Sanjiang Plain Northeast China. Journal of Hydrology 352: 202– 210.
Tsubo M and Walker S, 2002. A model of radiation interception and use by a maize–bean intercrop canopy. Agricultural and Forest Meteorology 110: 203–215.
 Walker S and Ogindo HO, 2003. The water budget of rain fed maize and bean intercrop. Physics and Chemistry of the Earth 28: 919–926.
Whrigt, JL. 1982. New evapotranspiration crop coefficient. Journal of Irrigation and Drainage Division 108: 57-74.
Zhang L, Van Der Werf W, Zhang S, Li B and Spiertz JHJ, 2007. Growth, yield and quality of wheat and cotton in relay strip intercropping systems. Field Crops Research 103: 178–188.