کارآیی کهور پاکستانی و کرت به عنوان درختان فراهم‌کننده نیتروژن بر خصوصیات خاک زیراشکوب آنها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده منابع طبیعی دانشگاه صنعتی اصفهان

2 دانشجوی دکتری علوم مرتع، دانشکده منابع طبیعی دانشگاه صنعتی اصفهان

3 دانش آموخته مرتعداری دانشکده منابع طبیعی دانشگاه صنعتی اصفهان

چکیده

اندازه­گیری دبی جریان با استفاده از دریچه­های کشویی از مسائل کلاسیک در علم هیدرولیک محسوب می­شود. تحقیق حاضر، با استفاده از رابطه بقای انرژی، روشی نوین برای تخمین ضریب دبی دریچه­های کشویی در شرایط جریان آزاد و مستغرق، ارائه می­کند. این روش ضریب دبی دریچه را، به­صورت تابعی از عمق آب در بالادست دریچه و قرائت مانومترهای نصب شده در کف مقطع دریچه و مستقل از شرایط جریان، بازشدگی دریچه و عمق پایاب، به­دست می­دهد. به­منظور ارزیابی قابلیت کاربرد رابطه پیشنهادی در این تحقیق در تخمین دبی، از نتایج 418 سری اندازه­گیری آزمایشگاهی بر روی دو دریچه کشویی با عرض­های 25 و 40 سانتی­متر به تفکیک جریان آزاد و مستغرق و در شرایط حضور و عدم حضور بلوک­های پایاب استفاده گردید. به­جهت عدم وابستگی ضریب دبی به عمق پایاب، این روش از مزیت­های عمده­ای چون تخمین پیوسته در شرایط جریان آزاد و مستغرق بر اساس یک معادله واحد و دقت بالاتر در دامنه استغراق­های کمتر برخوردار است. همچنین عدم نیاز به آستانه استغراق دریچه موجب سهولت کاربرد این روش در برآورد دبی جریان با حضور بلوک­های مانع­دار در حوضچه­های آرامش می­شود. نتایج نشان داد دخالت ضریب افت انرژی در رابطه پیشنهادی سبب کاهش متوسط قدرمطلق خطای نسبی در حدود 4/0 درصد و 6/2 درصد به­ترتیب برای شرایط جریان آزاد و مستغرق می­شود. همچنین رابطه پیشنهادی در شرایط جریان مستغرق دارای خطای نسبی تا حدود 5- درصد است. با این­وجود، روش پیشنهادی حساسیت قابل­توجهی به فشار مانومتری زیر دریچه، به­ویژه در محدوده استغراق بیشتر دارد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effects of Acacia nilotica and Prosopis juliflora as the Nitrogen Provider Trees on the Understory Soil of Them

نویسندگان [English]

  • seyed Hamid Matinkhah 1
  • Atefeh Shahbazi 2
  • Marziye Naiminia 3
چکیده [English]

Discharge measurement by sluice gates is one of the classical issues in hydraulic engineering. Based on the energy conservation relation, this study presents a novel method for estimating the discharge coefficient of sluice gates under free and submerged flow conditions. This method gives the discharge coefficient of sluice gates only as a function of upstream depth and bottom pressure measured by manometers located under the gate lip and is independent of flow conditions (free and submerged), gate opening and tailwater depth. For evaluating the applicability of the proposed equation in this research for estimating the flow discharge, the experimental results (418 runs) of two sluice gates with 25 and 40 cm widths are used in the conditions of presence and absence of end baffle blocks for both free and submerged flows. Independency of discharge coefficient from the tailwater depth has important advantages such as: continuous estimation of discharge coefficient under free and submerged flow conditions using a unified equation and higher accuracy at the lower submergence. Also being independent of tailwater depth makes easy flow estimation even at the presence of baffle blocks on the stilling basins. The results show that, applying the energy loss coefficient in the proposed equation decreases the mean absolute relative errors to 0.4% and 2.6% for free and submerged flow conditions respectively. Also the proposed equation has a relative error less than 5% under submerged flow conditions. The proposed method is very sensitive to bottom pressure head especially under higher submergence levels.

کلیدواژه‌ها [English]

  • Acacia nilotica
  • Canopy effects
  • Nitrogen fixing trees
  • Prosopis juliflora
Alhamid AA, 1999. Coefficient of discharge for free flow sluice gates. Engineering Science, 11(1): 33 –48.
Ansar M, 2001. Discussion of simultaneous flow over and under a gate by V. Ferro. Journal of Irrigation and Drainage Engineering ASCE 127(5): 325–326.
Bijankhan M, Ferro V and Kouchakzadeh S, 2012. New stage-discharge relationships for free and submerged sluice gates. Journal of Flow Measurement and Instrumentation 28: 50-56.
Bijankhan M and Kouchakzadeh S, 2014. Free hydraulic jump due to parallel jets. Journal of Irrigation and Drainage Engineering ASCE 141(2): 04014041-04014049.
Bijankhan M and Kouchakzadeh S, 2015. The hydraulics of parallel sluice gates under low flow delivery condition. Journal of Flow Measurement and Instrumentation 41: 140-148.
Castro-Orgaz O, Lozano D and Mateos L, 2010. Energy and momentum velocity coefficients for calibration of submerged sluice gates in irrigation canals. Journal of Irrigation and Drainage Engineering ASCE 136(9): 610–616.
Castro-Orgaz O, Mateos L and Dey S, 2013. Revisiting the energy-momentum method for rating vertical sluice gates under submerged flow conditions. Journal of Irrigation and Drainage Engineering ASCE 139(4): 325–335.
Castro-Orgaz O and Hager WH, 2014. Transitional flow at the standard sluice gate. Journal of Hydraulic Research 52(2): 264–273.
Clemmens AJ, Strelkoff TS and Replogle JA, 2003. Calibration of submerged radial gates. Journal of Hydraulic Engineering ASCE 129(9): 680–687.
Ferro V, 2000. Simultaneous flow over and under a gate. Journal of Irrigation and Drainage Engineering ASCE 126(3): 190- 193.
Ferro V, 2001. Closure to simultaneous flow over and under a gate by V. Ferro. Journal of Irrigation and Drainage Engineering ASCE 127(5): 326–328.
Garbrecht G, 1977. Discussion of discharge computation at river control structures. Journal of Hydraulic Division ASCE 104(12): 1481-1484.
Habibzadeh A, Vatankhah AR and Rajaratnam N, 2011. Role of energy loss on discharge characteristics of sluice gates. Journal of Hydraulic Engineering ASCE 137(9): 1079-1084.
Henry R, 1950. Discussion to ‘On submerged jets’. Transactions of the American Society of Civil Engineers 115: 687–694.
Khalili Shayan H and Farhoudi J, 2013. Effective parameters for calculating discharge coefficient of sluice gates. Journal of Flow Measurement and Instrumentation 33: 96-105.
Lozano D, Mateos L, Merkley GP and Clemmens AJ, 2009. Field calibration of submerged sluice gates in irrigation canals. Journal of Irrigation and Drainage Engineering ASCE 135(6): 763-772.
Montes J, 1997. Irrotational flow and real fluid effects under planner sluice gates. Journal of Hydraulic Engineering ASCE 123(3): 219-232.
Nago H, 1978. Influence of gate-shapes on discharge coefficients. Transactions of the Japanese Society of Civil Engineers 10(2): 116–119.
Noutsopoulos GK and Fanariotis S, 1978. Discussion to Free flow immediately below sluice gates, by N. Rajaratnam. Journal of Hydraulic Division ASCE 104: 451-454.
Rajaratnam N and Subramanya K, 1967. Flow equation for the sluice gate. Journal of Irrigation and Drainage Division ASCE 93(3): 167-186.
Roth A and Hager W, 1999. Underflow of standard sluice gate. Experiments in Fluids 27: 339–350.
Sauida FS, 2014. Calibration of submerged multi-sluice gates. Alexandria Engineering Journal 53(3): 663-668.
Sepulveda C, 2007. Instrumentation, model identification, and control of an experimental irrigation canal. PhD Thesis, Barcelona, Spain:,Technical University of Catalonia.
Swamee P, 1992. Sluice gate discharge equations. Journal of Irrigation and Drainage Engineering ASCE 118(1): 56–60.
Wahl T, 2004. Issues and problems with calibration of canal gates. Pp. 1-9. Proceedings of Critical Transitions in Water and Environmental Resources Management. June 27-July 1, Salt Lake City, Utah, United States.